
Safe polymorphic type inference for a Dynamically

Typed Language: Translating Scheme to ML∗

Fritz Henglein and Jakob Rehof
DIKU, University of Copenhagen

Universitetsparken 1
DK-2100 Copenhagen East, Denmark

Email: {henglein,rehof}@diku.dk

April 18, 1995

Abstract

We describe a new method for polymorphic type inference for the dy-
namically typed language Scheme. The method infers both types and
explicit run-time type operations (coercions) for a given program. It can
be used to statically debug Scheme programs and to give a high-level
translation to ML, in essence providing an “embedding” of Scheme into
ML.

Our method combines the following desirable properties:

• It is liberal in that no legal Scheme programs are “rejected” outright
by the type inferencer.

• It is modular in that definitions can be analyzed independent of
the context of their use. The inferred type scheme for a definition is
safe for all contexts. This is accomplished by admitting type coercion
parameters, resulting in a form of polymorphic qualified type system.

• It infers both types and run-time type operations and places the
latter opportunistically at any suitable program point, not only at
data creation and destruction points.

• It is very efficient. Its monomorphic fragment can be implemented
in almost-linear time, and the full polymorphic calculus appears to
be comparable with ML type inference in practice.

• It is conservative over simple and ML-polymorphic typing in that the
type inferencer inserts no run-time type operations for ML-typable
programs (it may add some coercion parameters, however).

• It classifies subexpressions as either definitely type correct (requiring
no run-time type checking), possibly type correct (requiring run-time
type checking), or definitely type incorrect (definitely aborting).

Our method is based on the formal type theoretic framework of dy-
namic typing, generalized to include polymorphic type coercions, recursive

∗To appear in Proc. ACM SIGPLAN Conf. on Functional Programming Languages and
Computer Architecture (FPCA), La Jolla, California, June 26-28, 1995

1

types, and polymorphic coercive types. In this regard it is most closely
related to the soft typing systems of Cartwright, Fagan, Wright and Aiken,
Wimmers, Lakshman.

The main technical contributions reported in this work are two-fold:

1. Synthesis of soft and dynamic typing: It extends monomorphic dy-
namic typing to polymorphic coercions from and to discriminative
sum types and recursive types. Thus it subsumes the typing power
of Cartwright, Fagan and Wright’s soft typing discipline and com-
bines it with the ability of dynamic typing to place coercions any-
where at all, not only at data creation and destruction points. De-
spite admitting polymorphic coercions and their arbitrary placement,
monomorphic inference of minimal completions is implementable in
almost-linear time, preserving the best known time bounds from dy-
namic type inference.

2. Safe modular type inference: Definitions can be type checked safely
and minimally, independent of any particular context, using coercion
parameters. This solves an outstanding problem with the Cartwright,
Fagan, Wright soft typing discipline. The number of coercion param-
eters is minimized by eliminating and identifying as many coercion
parameters as possible before abstracting over them.

The result of type and coercion inference can be translated into a
type correct ML program. Based on this we have developed a prototype
Scheme-to-ML translator for a subset of IEEE Scheme. In this paper we
give an introduction to the type theoretic framework of polymorphic dy-
namic typing, describe the phases of the type inference process, and give
some examples of the resulting Scheme-to-ML translator.

1 Introduction

High-level translation between statically and dynamically typed programming
languages is a notoriously tricky business, even for semantically and syntacti-
cally — seemingly — “compatible” language families such as Scheme and ML.
There are several reasons for being interested in a high-level translation, instead
of a low-level translation or direct compilation to machine code.

Systems written in several different programming languages have to commu-
nicate through the operating system with each other. This may be undesirable
for several reasons:

• It adds dependency and vulnerability on a particular operating system. In
particular it adds additional costs to software maintenance and porting.

• Communication through the operating system is low-level and thus error-
prone as well as relatively inefficient.

Porting code from one language to another is a way of preserving the invest-
ment made in the ported part of the system. For porting purposes, a high-level
translation is an absolute must. It should be geared primarily towards read-
ability and maintainability, only secondarily towards reasonable efficiency. It
need not even be complete so long as it handles a well-defined and sufficiently
interesting subset of the ported language completely and correctly.

2

We are interested in embedding a dynamically typed language such as
Scheme within a statically typed language. The principal advantages of this
are two-fold: most run-time type operations are eliminated statically, and data
can — at least in principle — be stored in a type-specific fashion. For example,
a pair of small integers can be given an untagged/unboxed representation, or
a list of sixteen elements, each of known type, can be allocated like a Pascal
record. Most importantly, however, we can statically debug the Scheme code by
identifying definite and possible type errors without executing the code.

2 Dynamic type inference with polymorphic type co-
ercions

This section introduces the formal framework of our completion inference sys-
tem with polymorphic completions. An in-depth coverage can be found in
Rehof’s Master’s thesis [Reh95]. In this paper we develop our formal frame-
work only for a core part of the language in order to keep the presentation
manageable.

2.1 Polymorphic completions

In this section we introduce our framework of polymorphic type coercions and
completions. Since we wish our coercions to model the run-time type checking
and tagging operations of Scheme we start from the observation that Scheme’s
dynamic types are given by the type tags ranged over by tc: (See the language
definition, [CR91])

tc ::= nil | boolean | symbol | char | vector
| pair | number | string | procedure

These types divide the data domain into nine disjoint sets. Of course, the full
Scheme language contains yet other types, such as, e.g., input and output ports,
but here we restrict our attention to the core types above.

In the manner of [Hen92a, Hen92b, Hen94] we assume the following prim-
itive type coercions: For every type tag tc, a primitive tagging coercion called
tc! and a primitive check-and-untag coercion called tc?. In addition, we as-
sume an identity coercion id. Intuitively, the tagging coercions are embedding
functions which add the specific type tag tc to an object; the check-and-untag
coercions project an object back: The operation tc? inspects its tagged ar-
gument, checks whether it has tag tc and, if so, strips it off and returns the
underlying (untagged) object; if another tag is found then a run-time type error
is generated. This typically means a program abort or escape to the interactive
top-level loop, with some error message to indicate the reason for the abort.
The identity coercion is just a no-op.

For example, executing [boolean!] #t evaluates to a tagged boolean object
〈bool, true〉, where bool is a representation for the type boolean. (In implemen-
tations tags use the 2 or 3 low-order or high-order bits of a machine address
word, with additional, more elaborate tagging in the pointed-to memory re-
gion.) Now, executing

3

[boolean?] ([boolean!] #t)

first evaluates [boolean!] #t to 〈bool, true〉 and then applies the check-and-
untag operation boolean? to this value. Since the tag in 〈bool, true〉 is the
expected one, the underlying untagged value, true, is returned. Note that this
is also the result of evaluating #t. In other words, semantically we have

[boolean?] ([boolean!] #t) = #t

It should be clear, however, that the right-hand side is more efficient than
the left-hand side. Applying another check-and-untag, such as procedure? to
[boolean!] #t results in a run-time error.

We assume a Hindley-Milner style polymorphic type language enriched with
regular recursive types and discriminative sums, in the style of soft typing
[Fag90, CF91, Wri94, WC94]; in addition, we introduce the notion of coercive
types:

τ ::= α | tc(n)(τ1, . . . , τn) | µα.τ | ∑
tc tc(τ)

ω ::= τ | (τ ; τ) ⇒ ω
σ ::= ω | ∀α.σ

Here tc(n) ranges over type tags of arity n. We treat the procedure tag as a
binary constructor, and we write τ → τ ′ for procedure(τ, τ ′); also, we write
τ ∗ τ ′ for pair(τ, τ ′). Recursive type abstractions of the form µα.τ are finite
notations for possibly infinite, regular trees, as in [CC91].

Types of the form
∑

tc tc(τ) are discriminative sums, where the top level
type constructors of the summands are required to be distinct (see [Reh95]
and also [Fag90] for more details.) In this paper, we generally assume that tc
ranges over the whole type constructor alphabet (denoted T) in a sum.1 We
use k as a parameter for the number of constructors. Moreover, we assume a
fixed ordering of the type constructors in T such that the summands are always
listed according to that order. We think of T as indexed by I = {1, . . . , k}.
Restrictions such as these result in a simplification which is important for prac-
tical purposes, as it is tantamount to turning the sum type construction into
a “free” type constructor. The literature on soft typing (mentioned above)
contains good discussions of these issues; see also [Reh95] for more detailed
information. The notation tc(τ) denotes the application of a type constructor
to a type vector (τ) where it is tacitly assumed that the length of the vector
matches the arity of the type constructor.

Types ranged over by τ are monotypes, and types ranged over by σ are
type schemes, as usual. However, in comparison with standard Hindley-Milner
systems, we have further stratified the type language with an additional class,
ranged over by ω, of coercive types, in order to accommodate polymorphic coer-
cion parameters, as explained below. We sometimes use the abbreviation s to
range over coercion signatures, which are expressions of the form τ ; τ ′.

It is worth noting that our coercive types (ω) are a special case of Jones’
qualified types ([Jon92, Jon94]). It would be interesting to apply his general
framework to the present application.

1This is due to the fact that Standard ML, the target of our translation, only has nonex-
tensible sum types with name equivalence, called datatypes.

4

Coercions are assigned polymorphic signatures by the following axiom schemes:

tcj! : tcj(τj) ;
∑

tci∈T tci(τ i)
tcj? :

∑
tci∈T tci(τ i) ; tcj(τj)

id : τ ; τ

where tcj ∈ T . (Recall that we assume that T denotes the set of all type
constructors.)

For instance, the tagging coercion procedure! has signature of the form

(τ → τ ′) ; (τ → τ ′) +
∑

tci(τ i)

such that the type constructor→ is not one of the tci in
∑

tci(τ i). The intention
is that this coercion can be applied to any object of functional type, and such
that the resulting object can be regarded as the element of a corresponding
sum.

Thus, sum types can be thought of as the types for all tagged objects. In
this respect sum types are like the universal type Dyn [Hen92a, Hen92b, Hen94].
Note, however, that the present framework is considerably more powerful. In
the Dyn-based type system a tagging operation tc! is only applicable to objects
of type tc(Dyn, . . . , Dyn). This forces the components of an object to be tagged
if the whole object is to be tagged, resulting in a cascading effect of tagging and
untagging operations.

To illustrate, suppose we discover that some subexpression λx.M needs to
be tagged (with procedure!) within some larger context. In a monomorphic
discipline, this requires that we complete the abstraction at type Dyn → Dyn,
and this, in turn, can lead to the need for further tags and checks inside the body
M , even though the abstraction, by itself (in isolation from the context), could
be completed without any coercions. This problem is overcome by considering
the coercions as polymorphic constants, where, say, the tag procedure! can be
applied to an object of arbitrary functional type. Discriminativity, though, re-
quires that two functions embedded into the same sum type must have identical
types.

In addition to the primitive coercions above, we have induced coercions, as
follows: For every tag tc of arity n > 0, and coercions c1, . . . , cn there is an
induced coercion tc(c1, . . . , cn). In case tc is the functional tag, the signature
of the corresponding induced coercion, written c → d, is contra-variant in the
signature of the first coercion argument:

c : τ ; τ ′ d : τ ′′ ; τ ′′′

c→ d : (τ ′ → τ ′′) ; (τ → τ ′′′)

In all other cases, the signatures of c1, . . . , cn extend co-variantly to the
signature of the induced coercion:

c1 : τ1 ; τ ′1 . . . cn : τn ; τ ′n
tc(c1, . . . , cn) : tc(τ1, . . . , τn) ; tc(τ ′1, . . . , τ ′n)

Coercions may also be formed by composition (◦):
c : τ ; τ ′ d : τ ′ ; τ ′′

d ◦ c : τ ; τ ′′
.

5

Finally, we assume an infinite supply of coercion parameters (variables) ranged
over by π, as a vehicle for coercion abstraction and application in polymorphic
completions.

We develop our formal framework in this paper only for a core fragment
of Scheme, called CoreScheme, defined as follows, where M, N, P range over
CoreScheme expressions:

M ::= x | true | false | (if M N P) |
(lambda (x) M) | (M N) | (let x M N) | (define x M)

Here the define construct allows recursive definitions.
In this paper we construct completions of CoreScheme expressions. A com-

pletion of an expression M arises from insertion of coercions into M, in a manner
which is disciplined by a type system, to be described. A CoreScheme ex-
pression without any coercions is sometimes referred to as a pure expression.
To define the set of completions we first define formally the set of coercions
introduced above, ranged over by c, d, as follows:

c ::= π | id | tc! | tc? | tc(n)(c1, . . . , cn) | c ◦ d

The set of completions, then, is given by continuing the definition of CoreScheme
expressions above with

M ::= . . . | [c]M | Λπ : s.M | M{c}

defining, respectively, coercion application, coercion abstraction and coercion
instantiation.

2.2 Type system

The type system is given in Figure 1. It defines the set of well typed completions.
It is a standard Hindley-Milner polymorphic system extended, in the last five
rules, with rules for recursive types, coercion application, coercion abstraction,
coercion instantiation, and definitions, respectively. In the recursion rule (ninth
rule from top), the relation τ ≈ τ ′ holds, if and only if the (possibly) infinite
regular unfoldings of τ and τ ′ are identical. See [CC91] for further information.
In the rule for definitions (last rule), the expression C ⇒ τ denotes type s1 ⇒
. . . sn ⇒ τ , where C is the set of coercion signatures s1, . . . , sn.

Note that any pure expression which is well typed is a completion (of itself.)
In the presence of recursive types, it is immediate that any term of the pure
λ-calculus is a completion of itself.2

2.3 Safety, minimality and modularity

There may be several completions of the same term at the same type. Not
all of these will be equally good, and a completion inference system must be
judged by the quality of the completions it infers. Safety and minimality are
the parameters on which we judge our completions.

2Prove by structural induction on λ-terms that every term has the type µα.α → α

6

Γ, x : σ ` x : σ

Γ ` χ : bool , χ ∈ {true, false}

Γ, x : τ ` M : τ ′

Γ ` (lambda (x : τ) M) : τ → τ ′

Γ ` M : τ → τ ′ Γ ` N : τ
Γ ` (M N) : τ ′

Γ ` M : bool Γ ` N : τ Γ ` P : τ
Γ ` (if M N P) : τ

Γ ` M : σ α 6∈ FV (Γ)
Γ ` M : ∀α.σ

Γ ` M : ∀α.σ

Γ ` M : σ{α := τ}

Γ ` M : σ Γ, x : σ ` N : σ′

Γ ` (let x M N) : σ′

Γ ` M : τ τ ≈ τ ′

Γ ` M : τ ′

Γ ` M : τ Γ ` c : τ ; τ ′

Γ ` [c]M : τ ′

Γ, π : s ` M : ω
Γ ` Λπ : s.M : s ⇒ ω

Γ ` M : s ⇒ ω Γ ` c : s
Γ ` M{c} : ω

{π1 : s1, . . . , πn : sn},Γ, x : τ ` M : τ C = s1 . . . sn

Γ ` (define x Λπ1 . . . πn.M) : C ⇒ τ

Figure 1: Inference rules for polymorphic dynamic typing

7

Note that tc! ◦ tc? = id does not hold, since standard (“naive”) coercion
evaluation may generate a run-time error during execution of tc!◦tc?, whereas
evaluating id does not. Satisfying this equation would require costly algebraic
coercion simplification at run-time. Thus compositions of the former kind are
liable to generate avoidable run-time type errors. Only equalities of the form
tc? ◦tc! = id may be assumed to hold.3 For example, the coercion boolean? ◦
procedure! ◦ procedure? ◦ boolean! will generate a run-time error, since a
boolean tag is first attached to the argument, followed by a functional check.
This check then generates an error. The coercion may consequently be regarded
as unsafe, since the identity coercion boolean? ◦ boolean! = id might as well
have been chosen. Hence, we shall always restrict our search for completions to
those that are safe.

Definition 1 (Safety)
Let M and M′ be two completions of the same pure expression at the same type.
We write M v M′ if it holds, for every context C into which M and M’ can be
type-correctly inserted, that M generates a run-time type error only if M’ does.
In case M is a completion at a monomorphic type τ , we say that M is safe at τ if
it holds for every other completion M’ of the same pure term at the same type,
that M v M′.

An arbitrary completion M is said to be adaptable to a mono-type τ if there
is a coercion c such that [c]~M has type τ where M̃ arises from M by a series of
coercion abstractions and instantiations.

We say that a completion M at an arbitrary type is polymorphically safe if M
is adaptable to a safe completion at every mono-type. 2

Note that polymorphic safety is a very strong condition. It is suitable for
a situation where we aim at modularity, demanding that completions must be
produced which work in all possible contexts of use. Among the polymorphi-
cally safe completions we intuitively seek to minimize the amount of run-time
type operations and the number of coercion parameters. Certain coercions can
be statically determined to be superfluous; in particular we shall orient the
equation tc? ◦ tc! = id from left to right, viewing the right-hand side as more
efficient than the left hand side (although both are equally safe.) See [Hen94]
for a formal notion of minimality.

To illustrate the rôle played by coercion parameters for both polymorphic
safety and minimization, consider as a simple example the program

(define M (lambda (x) (if true x (cons 1 2))))

This program is a completion of itself at type

number ∗ number → number ∗ number.

However, this completion is not polymorphically safe, since M will generate a
run-time type error when adapted to another type; e.g., number → number.

3In these decisions we follow [Hen92a, Hen94], to which the reader is referred for further
information.

8

To wit, extending M to a completion for C[M], where

C ≡ (+ ([] 1) 2),

requires coercions from number ∗ number to number and back:

C[(+ ([number?][cons!](M ([cons?][number!]1))) 2)],

which will generate a run-time type error. Let us consider the completion M’
of M then:

M′ ≡ (define M (lambda (x) (if true x [cons!](cons 1 2))))

at type scheme
∑

[number ∗ number] →
∑

[number ∗ number]

(The sums shown are shorthands for summations in which the pair type occurs
at the appropriate place and the other summands are the appropriate type
constructors applied to fresh type variables.)

It can be adapted to C in such a way that the resulting expression does not
generate an error:

(+ ([number?](M’ [number!]1)) 2)

This shows that M — our first completion — is not polymorphically safe.
To continue the example, we can easily find contexts where the tagging

coercion of M’ is undesirable; e.g.,

C ′ ≡ (car ([] (cons 3 4)))

which forces the completion of C’[M’] to be

(car ([pair?](M’ ([pair!](cons 3 4)))))

In the context C’ it would be better to use M instead of M’ since (car (M (cons
3 4))) gives the same result, only without having to tag and untag any data.

Thus it is seen that minimization and safety are aims that must be kept in
balance: from the point of view of minimization, M may be appealing, but un-
fortunately it is unsafe. Parameterization over coercions is an important means
of ensuring polymorphic safety while still offering the possibility of utilizing
context specific information, once the context of use is given.

In our example, using coercion parameters we can reach a compromise,
completing M as

(define M’’ (Λπ : number ∗ number ; α.
(lambda (x)

(if #t x ([π](cons 1 2))))))

at coercive type scheme

∀α.number ∗ number ; α ⇒ (α → α)

This completion can then be instantiated with the identity coercion when in-
serted into C’:

9

(car (M’’{id} (cons 3 4)))

When inserted into C we obtain a safe completion by passing cons instead of
id:

(+ ([number?](M’’{cons!} ([number!] 1))) 2)

The price we are paying is that coercions need to be passed at runtime.
Clearly it is important to keep the number of coercion parameters to a min-
imum. In practice most function definitions have polymorphically safe and
minimal completions with no or very few coercion parameters.

The cost of the remaining coercion parameters can be minimized by employ-
ing partial evaluation for complete programs and specializing coercion parame-
ters away before compilation. This appears to be most promising in connection
with “nonparametric” implementation technology for polymorphic functions
[Tol94, HM95].

3 Translating Scheme to ML

In this section we outline the core of our Scheme-to-ML translation. The basic
idea of the core translation is as follows. Tagging coercions are translated to
injections into a polymorphic sum-type containing injections corresponding to
every type tag of the Scheme type system:

datatype (’a1, ’a2, ’a3, ’a4, ’a5) Dynamic =
T_NIL |
T_BOOL of bool |
T_SYMBOL of string |
T_CHAR of string |
T_STRING of string |
T_NUMBER of int |
T_VECTOR of ‘a1 array |
T_PAIR of ‘a2 * ‘a3 |
T_PROCEDURE of ‘a4 ->‘a5

This represents a discriminative sum type constructor in which all type con-
structors of the source language are present. The type variables (’a1, ’a2,
’a3, ’a4, ’a5) reflect the number of different type argument positions in the
sum type; these can be instantiated independently in different contexts.

Check-and-untag coercions can then be defined according to the schema

exception TypeError;

fun U_TAG x =
case x of
T_TAG y => y

| _ => raise TypeError

for every primitive tagging coercion TAG. Induced coercions are defined by

fun id x = x

infix ->;

10

fun c->d = fn f => fn x => d(f x)

infix o;
fun c o d = fn x => c(d x)

Recursive types require that we use coercions of recursive datatypes. For in-
stance, to translate the combinator

(lambda (x) (x x))

we translate the type recursion α = α → β via the declarations

datatype (’a, ’b) recty =
INREC of (’a, ’b) recty -> ’b

fun outrec (INREC x) = x

where outrec gets the type

(’a,’b) recty -> (’a,’b) recty -> ’b

Unfolding of the recursion equation can then be achieved by coercing with
outrec as in the ML completion

fn x => (outrec x) x

at the type

(’a,’b) recty -> ’b

The outline of the translation given here is somewhat oversimplified for the sake
of brevity. Section 6 discusses how particular features of Scheme are addressed.
Section 7 gives examples of inferred completions translated to Standard ML.

4 A simple example

Before delving into a detailed description of the type inference process let us
consider a simple example to get an idea of what the type inference accomplishes
and how it does it.

We think of type inference as a problem of solving for unknown coercion
variables and type variables. After parsing the input program, every subex-
pression is annotated with a unique coercion variable having types satisfying
the “equational” typing rules. For example, consider the function definition for
f:

(define f
(lambda (x)

(lambda (y)
(if y

x
(+ x 1)))))

After annotation with coercion variables of suitable types we get the annotated
definition4

4This is simplified in that we assume + to be a given form with two argument expressions.

11

(define f[c1,c2,c3,c4,c5,c6,c7,c8]
([c1] (lambda (x)

[c2] (lambda (y)
([c3] (if ([c4] y)

([c5] x)
([c6] (+ ([c7] x) ([c8] 1)))))))))

where the coercions variables c1, ..., c8 have the following functionalities:

c1 : (α → ε) ; µ c5 : α ; γ
c2 : (β → δ) ; ε c6 : number ; γ
c3 : γ ; δ c7 : α ; number
c4 : β ; bool c8 : number ; number

This gives a type correct completion at type

∀αβγδεµ.(α → ε) ⇒ (β → δ) ⇒ (γ ; δ) ⇒ (β ; bool)
⇒ (α ; γ) ⇒ (number ; number) ⇒ µ.

Since the number of these coercions is proportional to the size of an expres-
sion the number of coercion parameters obtained in this fashion quickly gets
out of hand. With polymorphic let-expressions they even grow exponentially.

The purpose of the following analysis is to get rid of as many coercion
parameters as possible by instantiating them to coercion constants, without,
however, losing (polymorphic) safety or minimality of the resulting completion.
For example, since c8 has type signature number ; number we can replace
c8 by id. We can instantiate β to bool and thus replace c4 by id because the
boolean test requires a boolean value,5 and we can check the value of y to be a
boolean already when passing it to y. Finally, we can replace c1, c2, c3 and c5
by identity coercions since any tagging or checking at the corresponding subex-
pressions can be “pushed” into the context; that is, the context is responsible
for coercing the arguments to f and its result to suit its requirements. (This
may require applying induced coercions to f.)

The only remaining coercion variables are c6: number → α and c7: α →
number, yielding the completion

(define f[c6,c7]
(lambda (x)

(lambda (y)
(if y

x
([c6] (+ ([c7] x) 1))))))

at type
∀α(number ; α) ⇒ (α ; number) ⇒ α → bool → α.

These last two coercions, however, we do not remove. It is tempting, but
unsafe to set α to number and thus replace both c6 and c7 by the identity
coercion. This is tantamount to insisting that x only be passed numbers. This

5This is not the case in ordinary Scheme! There any value is acceptable in in the test part
of an if-expression.

12

is unsafe since an application of f to any value v for x succeeds and returns v if y
is passed #t. We could also set α to (...) Dynamic and replace c6 by number!
and c7 by number?. This gives a safe completion and eliminates both coercion
parameters. Yet it commits the function to execute these type coercions every
time the function body is executed, even when x is passed a number.

In a complete program context the coercion parameters can usually be re-
moved by partial evaluation. This eliminates the need for passing coercions at
run-time. At the same time the specialized versions have only a minimum of
run-time type operations.

5 Solving coercion constraints

We describe the phases by which the type inference process analyzes a program.
Several of these phases can be merged for practical efficiency.

5.1 Parsing and attribution

In the first stage the input is parsed into an attributed abstract syntax tree.
Every subexpression e has a new coercion variable c whose type signature is
initialized to α ; β, where α and β are unique. We say β is the high type of c
(and, by extension, of e) and α its low type. The coercion variables range over
primitive type coercions, including the operation that unconditionally generates
a (run-time!) type error.

Lambda-bound variables have a single unique type variable as their attribute
and let-bound variables get a (possibly coercion parameterized) type scheme,
which is initialized to some (irrelevant) value.

The type variables may be be unified with other types or type variables in
the later phases. Indeed, the unifications taking place constitute the inference
process, because the coercions are determined uniquely by their type signatures.

5.2 Unification of types according to type rules

In the second stage the types in the coercion signatures are unified in accordance
with the static typing rules. For example, if α is the high type of e, β the high
type of e’ and γ the low type of (e e’), then α is unified with the function type
β → γ. Thus after this step the coercion variable c attributing e has signature
δ ; (β → γ), where δ is the low type of e. This gives some information about
c but does not identify it. Knowing that c must be a primitive coercion there
are four possibilities for what coercion c could be in the end:

1. if δ = (β → γ) then it is the identity (“no-op”) coercion id;

2. if δ = tc(. . .) for any type constructor tc other than → then c is the error
coercion, i.e. the coercion that generates a type error whenever applied to
anything at all;

3. if δ = (. . .) Dynamic then c is the tag checking coercion U PROCEDURE;

13

4. finally, if δ is a type parameter (that is, a bound type variable within a
type scheme), then c is a coercion parameter.

The result of the first stage is a completion that satisfies the type rules of
Section 2. The following phases eliminate most of the coercion variables by
“solving” for the type variables occurring in the coercion signatures and thus
setting them either to the identity coercion or a specific primitive type coercion.

5.3 Construction of simple value flow graph

The type signatures of all the coercion variables in an attributed expression
constitute its coercion constraints. They can be viewed as the edges of a value
flow graph, where the types occurring in the constraints are the nodes of the
graph. Knowing that constraints must be solved to be signatures of primitive
coercions we can deduce that certain types must be equal. Let us consider a
couple of typical examples.

• Consider a constraint of the form

tc(α1, . . . , αn) ; tc(β1, . . . , βn).

There is only one primitive coercion with a signature that matches this
constraint: the identity coercion. Thus we can unify α1 = β1, . . . , αn =
βn.

• Consider the two constraints

tc(α1, . . . , αn) ; γ

and
tc(β1, . . . , βn) ; γ

from two coercion variables c1,c2. Since they both coerce to the same
type, c1 and c2 must be equal. Thus we can unify α1 = β1, . . . , αn = βn.

• Consider the two constraints

tc(α1, . . . , αn) ; γ

and
γ ; tc(β1, . . . , βn).

Even though we cannot identify which particular coercions these con-
straints correspond to we can conclude that the component types must
be equal. Thus we unify, as in the previous case, α1 = β1, . . . , αn = βn.

Generalizing all these cases, let τ1 = tc(α1, . . . , αn) and τ2 = tc(β1, . . . , βn)
be arbitrary nodes (types) in the constraint graph such that τ1 and τ2 can reach
each other by following constraint graph edges in either backwards or forwards
direction, then it must be the case that α1 = β1, . . . , αn = βn. We call this the
simple value flow closure condition.

14

The simple value flow graph (SVFG) induced by a set of constraints is the
largest graph that satisfies the simple value flow closure condition and can be
derived from the constraints, viewed as a graph, by contracting nodes (unifying
types). Constructing the simple value flow graph is what we do in this, the
third stage.

To get a more intuitive understanding of the SVFG we can think of the
low type of a (sub)expression as its abstract value. (Several expressions may
have the same abstract value.) The constraints (coercion signatures) are then
edges that show how values “flow” through the program. If the low type of a
constraint (the head of a flow edge) is of the form tc(α1, . . . , αn), it indicates
a subexpression where a value (such as a function, pair, number, etc.) is con-
structed. If the high type of a constraint (tail of a flow edge) is of the form
tc(’a1,...,’ak), this indicates a subexpression where a value is destructed;
such as when it is applied as a function, or is the argument of a projection
operation for pairs. The simple value flow graph connects possible producers
with consumers of values. It is called simple because it does not preserve flow
directionality for the components of structured or higher-order types.

The SVFG is computed very efficiently, in almost-linear time relative to
the size of the original graph, using an “instrumented” unification algorithm
based on the union-find data structure with path compression and ranked union
[Hen92c].

5.4 Cycle elimination

The simple value flow graph of an expression may contain cycles; that is, a set of
type variable nodes each of which reaching and being reachable from any other
node in the set. In the following (fifth) stage we shall set the value of a type
variable based on the sources reaching it and the sinks it reaches in the SVFG.
Since this information is identical for all type variables on a cycle, we collapse
all variables in a cycle by unifying them with each other in this, the fourth
stage. This is done using an efficient maximal strong components algorithm.

5.5 Sources and sinks of type variables

In the fifth stage we determine the types of type variables using information
on all its sources and sinks in the acyclic SVFG. (A source is any node with no
incoming flow edges. A sink is any node with no outgoing flow edges.)

The set src(α) for a node α are all those sources that reach α, and snk(α)
contains all those sinks that can be reached from α.

The key insight in the following considerations is that src(α) describe the
types of all values that can possibly reach α. Similarly, snk(α) describes the
expected types of all the possible uses of the values of α.

Combining this information, we determine the type of a type variable α by
checking which of the following cases applies first:

1. If src(α) contains only nonvariable types, each of them having the same
type constructor, then this indicates that only values of that particular
type can reach α. Thus we unify α with src(α).

15

2. If snk(α) contains only nonvariable types, each of them having the same
type constructor, then this indicates that every value reaching α will be
used — if at all — by operations for that particular type. Thus we unify
α with snk(α). This may result in an “early” type check operation for a
type that is performed long before an operation requiring an argument of
that particular type is executed.

This appears plausible — if the only use of a value after some program
point is as a number, why not check that it is a number right away?
— but it is not entirely safe in that the use may not always actually
be executed. If an absolutely faithful translation preserving the original
semantics is required we can use exclusively src(α), but not snk(α), to
make a determination for α. Alternatively, it should be possible to devise a
”is-definitely-used” analysis to verify when our rule can safely be applied.

3. If src(α) contains at most one nonvariable type (say tc(α1, . . . , αn) and
at least one variable type then we have a situation where it could be that
only values of type tc(α1, . . . , αn) reach α — or not — depending upon the
values of the type variables(s). In this case we make α a type parameter
and unify it with all the variable types in src(α) and snk(α).

Analogously for snk(α)

4. If both src(α) and snk(α) contain at least two types with distinct type
constructors each, this signals that values of different types can reach the
expression(s) e with low type α and that e may be used in operations
requiring different types. This is a plausible situation [Tha90], as all the
operations may work without type error at run-time. In this case the type
tagging and checking will have to be done at run-time: we unify α with
(. . .) Dynamic where all the nonvariable types of src(α) and snk(α) enter
as summands.

Since snk(α) should give all the possible uses of α we have to adjust our
notion of sinks. This is to make sure we detect the case where a program
variable is used in the then-branch of a conditional, but not in the else-branch,
or vice versa. We require of every program that, as in relevance logic, every
bound variable has at least one applied occurrence and that both branches of
a conditional contain the same set of free variables. This is accomplished by
including explicit operations for “discarding” the value of a variable (as in linear
logic) in a preprocessing step.

5.6 Coercion identification

In the previous stages we have solved for the type variables in the attributed
syntax tree. In the sixth stage we determine the coercions by looking at their
type signatures. For a coercion variable c with type signature τ1 ; τ2 there
are the following possibilities:

1. τ1 and τ2 are equal: in this case c is id;

16

2. τ1 = (...) Dynamic and τ2 = tc(...): in this case c is the check
operation for type constructor tc.

3. τ1 = tc(. . .) and τ2 = (...) Dynamic: in this case c is the tag operation
for type constructor tc.

4. τ1 = tc(...) and τ2 is a type parameter, or vice versa: in this case c is a
coercion parameter.

5.7 Forming polymorphic coercive types

In the seventh stage we determine the types of let- and define-bound variables
x: all type and coercion parameters occurring in the expression x is bound to
are collected and abstracted over (generalized). To ensure that this is correct
we check that

• the set of coercion parameters is empty, or

• e is a syntactic value, such as (lambda (x) e).

If none of these two conditions applies, then we instantiate all coercion param-
eters to either tagging or checking coercions. This is to make sure that the
call-by-value semantics of Scheme is preserved. Since top-level definitions must
not contain imperative type variables we “monomorphize” all imperative type
variables still occurring in the type by unifying them with type Dyn. Imperative
type variables arise in connection with side-effecting operations such as set!,
set-car!, set-cdr! and call/cc. The monomorphic universal type Dyn is
definable as

datatype Dyn = REC of (Dyn,Dyn,Dyn,Dyn,Dyn) Dynamic.

5.8 Pretty-printing/translation

In the eighth and final stage the results of the analysis are pretty-printed as an
annotated Scheme program (for static debugging purposes) and/or translated to
Standard ML (for translation purposes). Translation to Standard ML is done
by generating ML Kit abstract syntax from the coercion annotated Scheme
abstract syntax.

6 Dealing with Scheme specifics

In this section we describe how we address the specific problems raised by
translating full IEEE Scheme to ML.

6.1 Dynamic top-level bindings

Scheme employs dynamic top-level binding; that is, in a top-level procedure
definition, the free variables are not resolved statically against the bindings
that hold in the environment of the definition. Instead, the free variables are
bound in the dynamic environment of the particular call to the function. In the
example

17

(define append (lambda (l1 l2)
(if (null? l1)

l2
(cons (car l1) (append (cdr l1) l2)))))

in Section 4 we assumed fixed types for null?, cons, car, cdr and treated
the call to append as a recursive function call. This is indeed useful for static
debugging purposes, where we pose the question: “What is the type of append,
if we assume the standard bindings for the free variables?” For the purpose of
translating this definition faithfully to ML, which has static top-level binding,
we cannot simply assume that these variables have their standard bindings
since they may be rebound dynamically. To account for this possibility we can
abstract over all individual occurrences of the free variables in the body of a
definition (this includes append in the example above!), in order to obtain a
combinator; that is, we treat the definition of append above as the combinator
definition

(define append (lambda (null?1 cons1 car1 append1 cdr1)
(lambda (l1 l2)
(if (null? l1)

l2
(cons (car l1) (append1 (cdr l1) l2))))

If a body contains several occurrences of a free variable then each is abstracted
separately.

This is translated into the ML function

fun append (null1, ..., cdr1) (l1,l2) = ...

which takes two structured arguments, the first being the relevant part of the
environment within which append is to be evaluated, the second being the
actual arguments to append.

Top-level dynamic binding is useful mostly as a method for accomplishing
program editing in an interactive, sequential top-level loop during program de-
velopment. It is of rather questionable value in a finished system since, in effect,
all identifiers, including the ones bound to standard procedures and those used
at the top level in the construction of the system, can be rebound to com-
pletely different values at any time during which the system runs. Typically
this is avoided, indeed prohibited, by providing a (nonstandard) mechanism
for “freezing” the environment and packaging it up with a complete program.
Thus a translation from Scheme programs to ML is probably best served by
performing it under the assumption of static top-level binding. In this case
none of the above parameterization over free variable occurrences in definitions
is necessary and the translation will look considerably more natural.

6.2 Side effects and call/cc

The arguments (or rather: their low types) that are side effected in Scheme
using set! or the standard functions for set-car!, set-cdr! are marked as
side-effected. In the translation these types will become reference types (“box”
types in Scheme/LISP lingo) with imperative type variables. Similarly, call/cc

18

obtains Standard ML type ((’ a -> ’ b) -> ’ a) -> ’ a with imperative
type variables ’ a, ’ b. Imperativity is preserved during type unification. Free
imperative type variables in top-level definitions are avoided by instantiating
them to type Dyn.

6.3 Boolean tests and exceptional values

In IEEE Scheme the value #f functions both as “false” in if-expressions and
as exception value in lookup-operations such as assoc. Furthermore, all values
different from #f function as “true” in an if-expression. The typing rules for
if-expressions and lookup functions in Scheme have type (...) Dynamic in
in the ML translation. This implies that, unfortunately, tagging and checking
“propagate” in the neighborhood of if-expressions and applications of lookup
functions for translation purposes only, even though their use is not attributable
to possible problems with type safety.

6.4 Lists in Scheme and ML

Lists play a special role both in Scheme and ML. Scheme has a plethora of
standard procedures for processing lists, and procedure arguments are passed
as lists. Similarly, ML has a standard type for lists and lots of operations on
them.

In the translation described above, lists become elements of type (...)
Dynamic instead of being translated to (ML) lists. In order to obtain lists as
the result of the translation we add another summand to (...) Dynamic:

datatype (’a1, ’a2, ’a3, ’a4, ’a5, ’a6) Dynamic =
...

| T_LIST of ’a6 list

This provides the possibility of ambiguous representation of tagged values; for
example, tagged ’() is either represented by T_NIL or T_LIST nil. Corre-
spondingly we change the check-and-untag coercions U_NIL and U_PAIR such
that they do not automatically fail when applied to a value tagged with T_LIST.

We can now treat ’a list as a “little” recursive sum type with type con-
structors NIL and PAIR. In the fifth stage of type inference (see Section 5.5) we
recognize the special case when only NIL and PAIR are the type constructors
from which a dynamic sum type would normally be built. In this case we map
the type variable in question to a list type. Should it be necessary to coerce
from a list type to a general dynamic type then we apply the T_LIST constructor
to the list.

6.5 Type testing routines

Type testing predicates are essentially the “checking part” of our check-and-
untag coercions. Any object can be safely tested for its Scheme type. For the
purpose of translation, type testing routines have static type

(′a,′ b,′ c,′ d,′ e)Dynamic− > bool

19

This supports an implementation of such predicates via type tags. For instance,
we can translate the Scheme predicate boolean? as

fun is_boolean x =
case x of T_BOOL _ => true | _ => false

Our type system does not model control flow information. Type testing predi-
cates aggravate the loss of static type information since they are typically used
to steer the control flow in a program in such a fashion that execution depends
on which type tag an object has at run-time.

6.6 I/O routines and equality predicates

I/O routines and equality predicates (as well as classical garbage collection) are
major causes of inefficiency in the implementation of polymorphically typed
languages since they require extensive tagging. (This is also the reason why,
hitherto, ML-like languages have been implemented by, in essence, translating
them to Scheme, not the other way round, as we are describing here.)

In our translation I/O routines and equality predicates expect their inputs
be of the monomorphic type Dyn. This is required in generality since Standard
ML does not support nonparametric polymorphism. In that case we could
have given the equality predicates equal?, eqv? and eq? the type scheme
∀αβ.α× β → bool, and, similarly, for I/O routines.

6.7 Translation vs. static debugging

We have mentioned that our system is intended to support the double purpose
of translation to ML and static debugging. We note, however, that those two
enterprises may not always share common interests. From the point of view
of static debugging, it is natural to adopt the principle that the inferred run-
time type operations should satisfy only requirements of run-time type safety.
On the other hand, viewing the process of completion as the backbone of a
translation may lead to decisions of language implementation which violate the
principle of inference for pure static debugging purposes just mentioned. An
example of this is the implementation of Scheme’s type testing predicates. As
indicated earlier, we implement these predicates, in the translation, via tagging
coercions. However, since such predicates are universally defined, they cannot
possibly give rise to run-time type safety problems, and hence the “implementa-
tion driven” introduction of tags (and, possibly, concomitant checks elsewhere
in the program) may be considered undesirable from a pure static debugging
perspective. Under this view, we may rather prefer to use the (non-parametric
polymorphic) typing of predicates P;

P : ∀α.α → bool

Here we abstract from the problem of how the predicates are implemented; they
might be implemented via techniques of run-time type parameter passing (as
have been discussed in several contexts recently, e.g., [Tol94, HM95]), or they
might in fact even be implemented via some form of tagging, and still this
wouldn’t show up in the completions of a “pure” system of static debugging.

20

7 Examples

In this section we consider SML-completions produced for some example defini-
tions. We first show two very simple definitions, illustrating the use of coercion
parameters.

(define f1 (lambda (x) (if #t x #f)))
(define f2 (lambda (x) (if #t x (car 1))))

The output of SML-completion inference is:

val rec f1 =
fn CV8 => let val rec f1 =

fn (x, []) =>
if true then x else (CV8 false)

in f1 end;
val rec f2 = fn (x, []) =>

if true then x
else (car (((fn x => raise TypeError) 1), []));

at the types

val f1 = fn : (bool -> ’a) -> ’a * ’b list -> ’a
val f2 = fn : ’a * ’b list -> ’a

respectively.
First we note a few things about the translation of non-core facilities used in

our examples here. Coercion parameters are denoted CVn where n is a numerical
index. Also, note that parameter lists of Scheme procedures are translated via
right-associated pairs, ending in []. This allows for simulation of Scheme’s
parameter list-pattern matching. Finally, note the use of the error-coercion

fn x => raise TypeError

which is used to translate error-generating coercions, such as, e.g.

[cons?][number!]1

The main point about the example above is that, in the case of f1, the
analysis discovers that the type of x cannot safely be identified with bool, since
x is not guaranteed to be consumed at that type. This forces the parameter
application in the second branch of the conditional. However, in the case of
f2, this consideration is rendered superfluous by the run-time type error at the
application of car, which results in the absence of any type constraints on the
result of that application.

Our next example shows the workings of primitive coercions. Consider the
little program

(define zip (lambda (p1 p2)
(cons (cons (car p1) (car p2))

(cons (cdr p1) (cdr p2)))))
(define g (lambda (x)

(if x (zip x ’(1 . 1)) (zip x ’(#f . #f)))))

The inferred SML-completion is:

21

val rec zip =
fn (p1, (p2, [])) =>
(cons ((cons ((car (p1, [])), ((car (p2, [])), []))),

((cons ((cdr (p1, [])), ((cdr (p2, [])), []))),
[])));

val rec g =
fn (x, []) =>

if ((check_BOOL) x)
then (zip (((check_PAIR) x),

((((in_INT) 1), ((in_INT) 1)), [])))
else (zip (((check_PAIR) x),

((((in_BOOL) false), ((in_BOOL) false)), [])));

at the types

val zip = fn : (’a * ’b) * ((’c * ’d) * ’e list) ->
(’a * ’c) * (’b * ’d)

val g = fn : (’a,’b,’c,’d) dyn * ’e list ->
(’a * (’f,’g,’h,’i) dyn) * (’b * (’j,’k,’l,’m) dyn)

While the function zip is completed with no coercions at all, its use in function
g leads to a spread of dynamic type coercions. There are two sources of this.
First, the type of the parameter x must be coerced to a dynamic sum, because
the conditional is assumed here to consume a boolean, and zip consumes pairs.
Second, the two branches of the conditional construct pairs of elements of differ-
ent types (integers and booleans), which again leads to the need for a dynamic
sum type for the components of the pairs. The function g was purposely in-
vented to illustrate the use of the dynamic sum; many programs are completed
with substantially fewer coercions, of course.

We give a few examples to show, among other things, optimized translation
of list types. In general, this is achieved by using “aggressive” typings of predi-
cates together with representation shift coercions between lists and pairs. Using
an aggressive non-parametric typing of the predicate null?, the map function

(define map (lambda (f l)
(if (null? l) ’() (cons (f (car l)) (map f (cdr l))))))

gets completed without any parameters, but with inferred representation shift
coercions for lists and pairs,

val PAIR2LST = fn (x, y) => x::y
val LST2PAIR = fn (x::y) => (x, y) | _ => raise EmptyList

as follows:

val rec map =
fn (f, (l, [])) =>

if (isnull (l, [])) then []
else (PAIR2LST (cons

((f ((car (LST2PAIR l, [])), [])),
((map (f, ((cdr (LST2PAIR l, [])),

The type of the completed map is

(’a * ’b list -> ’c) * (’a list * ’d list) -> ’c list

22

assuming the aggressive (non-dynamic) typing of the predicate null?, as

null? : ∀α.α list→ bool

This typing is also assumed in the next example.
The next example is the append-function, of two arguments. This function is

peculiar in that it does not destruct its second argument, which can be anything;
it consumes a list in the first argument. Since nothing can be assumed about the
type of the second argument, the object produced by append must be coerced
to the type of that argument; since this is unknown, the coercion must be
parameterized, as is shown below:

val rec append =
fn CV10 =>
let val rec append =

fn (l1, (l2, [])) =>
if (isnull (l1, [])) then l2
else (CV10 (cons

((car (LST2PAIR l1, [])),
((append ((cdr (LST2PAIR l1, [])),

(l2, []))), []))))
in append end;

The tautology checker

(define taut (lambda (prop)
(if (equal? prop #t)

#t
(if (equal? prop #f)

#f
(if (taut (prop #t))

(taut (prop #f))
#f)))))

(compare [Fag90, WC94]) can be completed as shown below, under the assump-
tion that equal? has type

equal? : ∀α.α ∗ α → bool

val rec taut =
fn (CV1, CV2) =>

let val rec taut = fn (prop, []) =>
if (isequal (prop, ((CV1 true), [])))
then true
else
if (isequal (prop, ((CV1 false), [])))

then false
else
if (taut (((CV2 prop) (true, [])), []))

then (taut (((CV2 prop) (false, [])), []))
else false

in taut end;

at the type

23

(bool -> ’’a) * (’’a -> bool * ’b list -> ’’a) ->
’’a * ’c list -> bool

A more admissive non-parametric polymorphic typing could be considered,
namely

equal? : ∀αβ.α ∗ β → bool

Using this typing would lead to elimination of the first coercion parameter in
the completion shown above.

8 Related work

The literature on type analysis of dynamically typed programming languages
is vast. Most of it employs intraprocedural data flow analysis to optimize the
implementation of dynamically typed languages, such as by eliminating run-
time type tests or resolving dynamic overloading or method dispatching. Some
of it, notably the work of Shivers [Shi91b, Shi91a] employs (interprocedural,
semantics-based) abstract interpretation for this purpose. As these works are
aimed at the implementation level they are not based on type systems under-
stood as formal tools for reasoning about the source programs. As such they
neither give a clear specification (such as a type system) to a programmer of
what they are doing, nor do they give much feedback to a user trying to debug
his or her program.

Our approach is based on a formal type system for a dynamically typed
language. As such it is most closely related in its goals to two recent sys-
tems of soft typing: Cartwright, Fagan and Wright at Rice University were
the first to expound the virtues of what they termed soft typing. They have
developed soft typing systems for Scheme based on Remy-encoded subtyping
[Fag90, CF91, Wri94, WC94]. Aiken, Wimmers and Lakshman [AWL94] (see
also [AW93]) have developed an alternative soft type system based on set con-
straint solution methods. The former system comprises Remy-encoded discrim-
inative sum-types, recursive types and Hindley-Milner style polymorphism; the
type language of the latter system is still more powerful, including all the set-
theoretic operations of union, intersection, negation and subtyping together
with so-called conditional types, which can express control-flow dependencies.

The present work differs from both these lines of work in several respects.
Three major points are:

1. Our system models both tagging and check/untagging operations and
deals with optimization of both kinds of run-time type operations as
dual aspects, in the style of Henglein’s dynamic typing [Hen92a, Hen92b,
Hen94]. This is in distinction to the other systems which assume that all
objects are tagged at run-time, and they only deal with optimization of
run-time checking operations.

2. Our Scheme-to-ML translation, based on the integrated soft- and dynamic
typing-style completion inference is new. Our translation is based in an
essential way on the explicit modeling of both of the dual run-time type

24

operations. Furthermore, the translation can be used to produce type-
specific efficient data representations.

3. The present work addresses the problem of inferring polymorphically safe
completions, suitable for modular or incremental completion inference, via
the use of coercion parameters. This problem appears not to have been
studied before 6 Previous work on soft typing has relied on global analyses,
where it is assumed that an entire program is given for analysis.

Of the systems mentioned, the soft type inference for Scheme of Cartwright,
Fagan and Wright is closest in spirit to ours. Whereas their run-time checks are
limited to be situated at primitive operations (including procedure application),
our system has no such restriction, since type coercions can in principle be
placed anywhere in a program, and in our present system their occurrence is in
fact not limited to primitive application points. This flexibility is important in a
system which addresses the modularity issue, since it helps decrease the number
of run-time type operations required for a universally adaptable completion.
Consider as a simple example the application function apply, given by

(define apply (lambda (f x) (f x))))

Our system infers the type ∀αβ.((α → β) ∗ α) → β and inserts no coercions at
all into the function, deferring all run-time type operations to the context of its
use. This is only possible because coercions can be placed at arbitrary points,
such as, e.g., argument positions. For example, apply can be inserted into the
context C ≡ ([] true 1), yielding the completion

(apply [F?][B!]true \:1)

of the expression C[apply], whereas insertion of apply into C ′ ≡ ([] (lambda
(y) y) 1) gives back just C ′[apply] itself, using no coercions. In contrast,
in a system in which run-time type checking operations adhere to primitive
application points, one is faced with the choice of either having or not having
a checked version of the application operation at (f x). Having it is necessary
in a universally applicable completion of apply, because a context such as C
would require it, but its position inside the function is unfortunate for contexts
such as C ′ which do not require the check.

9 Conclusion and future work

We have presented a type inference system for Scheme that is both liberal in
that it does not outright reject any Scheme programs, and it is “aggressive” in
that it infers safe polymorphic completions, yet seeks to minimize the number of
primitive coercions and coercion parameters (preferring to minimize primitive
coercions over coercion parameters) and finds a “clever” placement for coercions
in the source program. The results of the analysis can be used both for static
debugging of the source program and its translation to polymorphic languages
in the ML family, such as Standard ML and CAML. We have developed a system

6In [Wri94] [WC94] the issue is mentioned as an important part of future work for their
softly typed version of Scheme; see also below for further comparison.

25

that performs polymorphic type inference for the kernel of IEEE Scheme, and
we are in the process of extending it to a substantial subset of IEEE Scheme.
Part of this is a translator to Standard ML of New Jersey (SML/NJ). The reason
for picking Standard ML of New Jersey is that the ML Kit is currently built
on top of SML/NJ and that SML/NJ supports call/cc. Realistic alternatives
to SML/NJ are CAML Light and Moscow ML.

The Scheme translator is intended as a component of the ML Kit, a Standard
ML implementation kit developed at DIKU and the University of Edinburgh.
We envisage that the new implementation techniques under development for
Standard ML (region-based memory management and representation optimiza-
tion of structured data) can be utilized productively also for dynamically typed
languages such as Scheme. Obtaining truly efficient code is likely to require a
low-level translation into a suitable intermediate language, however.

To support static debugging of Scheme new type error finding and tracing
algorithms will have to be developed. For example, type error coercions passed
to coercion parameterized functions have to be traced to the place in the body
of the function definition that contains the corresponding coercion parameter
in applied position.

References

[AW93] Alex Aiken and Edward L. Wimmers. Type inclusion constraints and
type inference. In Proc. Conf. on Functional Programming Languages
and Computer Architecture (FPCA), Copenhagen, Denmark, pages
31–41. ACM Press, 1993.

[AWL94] Alexander Aiken, Edward L. Wimmers, and T.K. Lakshman.
Soft typing with conditional types. In Proc. 21st Annual ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Lan-
guages (POPL), Portland, Oregon. ACM, ACM Press, Jan. 1994.

[CC91] F. Cardone and M. Coppo. Type inference with recursive types:
Syntax and semantics. Information and Computation, 92(1):48–80,
May 1991.

[CF91] R. Cartwright and M. Fagan. Soft typing. In Proc. ACM SIGPLAN
’91 Conf. on Programming Language Design and Implementation,
Toronto, Ontario, pages 278–292. ACM, ACM Press, June 1991.

[CR91] W. Clinger and J. Rees. Revised4 report on the algorithmic language
scheme. ACM Lisp Pointers, IV, July-September 1991.

[Fag90] Mike Fagan. Soft Typing: An Approach to Type Checking for Dy-
namically Typed Languages. PhD thesis, Rice University, 1990.

[Hen92a] F. Henglein. Dynamic typing. In Proc. European Symp. on Program-
ming (ESOP), Rennes, France, pages 233–253. Springer, Feb. 1992.
Lecture Notes in Computer Science, Vol. 582.

26

[Hen92b] F. Henglein. Global tagging optimization by type inference. In Proc.
LISP and Functional Programming (LFP), San Francisco, California,
June 1992.

[Hen92c] Fritz Henglein. Simple closure analysis. DIKU Semantics Report
D-193, DIKU, University of Copenhagen, Universitetsparken 1, DK-
2100 Copenhagen East, Denmark, March 1992.

[Hen94] Fritz Henglein. Dynamic typing: Syntax and proof theory. Science
of Computer Programming (SCP), 22(3):197–230, 1994.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using
intensional type analysis. In Proc. ACM SIGACT/SIGPLAN Symp.
on Principles of Programming Languages (POPL), San Francisco,
California, Jan. 1995.

[Jon92] Mark P. Jones. A theory of qualified types. In Proc. European Sym-
posium on Programming (ESOP), Rennes, France. Springer-Verlag,
1992. Lecture Notes in Computer Science, Vol. 582.

[Jon94] Mark P. Jones. ML typing, explicit polymorphism, and qualified
types. In Proc. Conf. on Theoretical Aspects of Computer Science
(TACS), Sendai, Japan, pages 56–75. Springer-Verlag, 1994. Lecture
Notes in Computer Science, Vol. 789.

[Reh95] Jakob Rehof. Polymorphic dynamic typing — aspects of proof theory
and inference. Master’s thesis, DIKU, University of Copenhagen,
March 1995.

[Shi91a] O. Shivers. Data-flow analysis and type recovery in Scheme. In
P. Lee, editor, Topics in Advanced Language Implementation, chap-
ter 3, pages 47–88. MIT Press, 1991.

[Shi91b] Olin Shivers. Control-Flow Analysis of Higher-Order Languages or
Taming Lambda. PhD thesis, Carnegie Mellon University, May 1991.

[Tha90] S. Thatte. Quasi-static typing. In Proc. ACM Symp. on Principles
of Programming Languages, pages 367–381. ACM, Jan. 1990.

[Tol94] Andrew Tolmach. Tag-free garbage collection using explicit type pa-
rameters. In Proc. ACM SIGLPAN Symp. on LISP and Functional
Programming (LFP), Orlando, Florida, June 1994.

[WC94] Andrew K. Wright and Robert Cartwright. A practical soft type
system for scheme. In Proc. ACM Symp. on LISP and Functional
Programming (LFP), Orlando, Florida, 1994.

[Wri94] Andrew Wright. Practical Soft Typing. PhD thesis, Rice University,
1994.

27

