Synthesis with Incomplete Information

Orna Kupferman, Moshe Vardi

2nd International Conference on Temporal Logic, 1997

Introduction

- What is verification?
 - Check whether program P ϕ specification ψ
 - Potentially use counterexamples to refine and recheck
- When do we get ψ and P?

Program synthesis

- *synth* : specification $\psi \rightarrow$ program P
 - such that P ψ
- What is ψ ?
 - Straight-line vs. reactive
- Temporal logic

Temporal logic for program synthesis

- Linear or branching time?
 - CTL describes trees, viz. unfolded programs
 - LTL describes words, viz. computations
- CTL*
 - General method using standard constructions
 - $synth(\psi)$: $CTL^* \rightarrow program P$
 - (s.t. Ρ ψ)

What are our specifications?

- Quantification
 - x is the input
 - y is the output
 - $\forall x \forall y.\psi? \forall x \exists y.\psi? \exists x \forall y.\psi? \exists x \exists y.\psi?$
- Complete, open module: $\forall x \exists y. \psi$
 - In fact: ∀x∃y.Aψ
- Is every $\psi \in CTL^*$ realizable?

 $-\psi = x \quad \neg x$

A money-making proposal

- Step 1: ψ = G(Fx \Leftrightarrow y)
- Step 2: ???
- Step 3: Profit!
- What is wrong with $\forall x \exists y.AG(Fx \Leftrightarrow y)$?
 - Satisfiable: let y be Fx.
 - Valid: is satisfiable and has no free variables.

The program synthesis hydra

- Two problems
 - Identification of realizability
 - Realization (read "program synthesis")

Realizability

- A formula $\psi \in CTL^*$ is realizable *iff* there exists a program P such that P ψ
 - Any (deterministic) program P can be seen as a strategy function P : $(2^{I})^* \rightarrow 2^{O}$

Incomplete information

- With "incomplete information", there are two disjoint sets of input signals, I and E
 - I is known
 - E is unknown
 - Iterative realizability checks
 - I E = S
- Strategy functions see only I

Informal discussion

- Trees
- Tree automata
- Emptiness checks
- Program synthesis

Trees

• For a finite set Y, an Y-tree is a set $\mathsf{T} \subseteq \mathsf{Y}$

 $- \text{ s.t. } x \cdot v \in T \quad v \in Y \Rightarrow x \in T$

- $dir(x \cdot v) \equiv v$; $dir(\varepsilon) = v^0$
- T is a *full infinite tree* iff T = Y^{*}
- For finite sets Y and Σ, a Σ-labeled Y-tree is a pair <T, V>
 - T is an Y-tree
 - $\: V : T \to \Sigma$

Tree operators: x-ray

x-ray(<T, V>) is an (Y x Σ)-labeled Y-tree <T',
 V'>

 $- s.t. V'(x) = \langle dir(x), V(x) \rangle$

Tree operators: hide and wide

- hide_y(T ⊆ (X x Y)^{*}) = T' ⊆ X^{*} replacing each letter <x, y> with the letter x
- wide_y(<T ⊆ X*,V>) = <T', V'>

- s.t. T' \subseteq (X x Y)^{*} is a full infinite tree and V'(w) = $V(hide_{\gamma}(w))$

Tree operators: fat

- fat_{v} is a generalization of wide_y
- $fat_{y}(\langle \mathsf{T} \subseteq \mathsf{X}^{*}, \mathsf{V} \rangle) = \{ \langle \mathsf{T}' \subseteq \mathsf{X}^{*} \times \mathsf{Y}^{*}, \mathsf{V}' \rangle | \\ \mathsf{V}'(\varepsilon) \quad \mathsf{X} = \mathsf{V}(\varepsilon) \\ \forall \mathsf{w} \in (\mathsf{X}^{*} \times \mathsf{Y}^{*})^{+} . \ \mathsf{V}'(\mathsf{w}) = \mathsf{V}(hide_{y}(\mathsf{w})) \quad (dir(\mathsf{w}) \in \mathsf{E}) \}$
- wide'_y(<T,V>) \in fat_y(<T,V>)

$$- V'(\varepsilon) = V(\varepsilon)$$

- If V is X-exhaustive:

Computation trees

- Given a full infinite 2^r-tree, a program P induces a 2^o-labeled tree <(2^r)^{*}, P>
- Add in E: $\langle (2^{I} \ E)^{*}, P' \rangle = wide_{(2^{E})}(\langle (2^{I})^{*}, P \rangle)$
- A computation tree is the $2^{|E|} = 0^{-1}$ -labeled tree $\langle (2^{|E|})^*, P'' \rangle = x ray(\langle (2^{|E|})^*, P' \rangle)$

Informal discussion

- Trees
- Tree automata
- Emptiness checks
- Program synthesis

Tree automata

- Seen during Yoram and Shahar's presentation of CTL automata
- Alternating form equivalent to \$\mathcal{L}\mu\$ [EJ91]
 CTL* is contained, of course
- $\delta : \mathbb{Q} \times \Sigma \longrightarrow B^{+}(\mathbb{Y} \times \mathbb{Q})$
 - A state has transitions for a given input label
 - Boolean formula over the tree direction and next states

CTL* automata

- Automaton $A_{_{Y,\psi}}$ from $\psi\in CTL^{*}$ and a set Y
 - $O(2^{|\psi|})$ states
 - 2-pair acceptance condition
- Accepts computation trees
 - 2^{AP}-labeled Y-trees <T, V>
 - AP = I E O

 $- \mathscr{L}(\mathsf{A}_{\mathsf{Y},\psi}) = \{\mathsf{<}\mathsf{T}, \, \mathsf{V}\mathsf{>} \mid \mathsf{<}\mathsf{T}, \, \mathsf{V}\mathsf{>} \quad \psi\}$

Informal discussion

- Trees
- Tree automata
- Emptiness checks
- Program synthesis

Our problem, formally

- Given a CTL^{*} formula ψ over AP = I E O (disjoint), is there a program P such that its computation tree satisfies ψ?
- Given a tree automaton A accepting only trees that satisfy ψ , is $\mathscr{L}(A)$ empty?

- Realizability only?

Emptiness (informally)

- $\mathscr{L}(A) \neq \emptyset \Leftrightarrow \exists \langle T, V \rangle \text{ s.t. A accepts } \langle T, V \rangle$
 - A accepts <T,V> ⇔ ∃ a run of A on <T,V> that accepts
 - This run makes "determinations"
- Given regular determinations, we have a deterministic tree automaton on Y-trees labeled by $\boldsymbol{\Sigma}$
 - $Y = 2^{1}$
 - Σ **=** 2⁰

Informal discussion

- Trees
- Tree automata
- Emptiness checks
- Program synthesis
- Break!
- Program synthesis

The synthesis theorem

Given an alternating tree automaton A over Σ labeled Y-trees, the following are equivalent:

- A is nonempty.
- There is a finite-state strategy $f : Y^* \rightarrow \Sigma$ - s.t. <Y*,f> $\in \mathscr{L}(A)$

Nonemptiness algorithms can be extended to generate this strategy.

Programs?

- Emptiness checks can generate "programs"
 - Input alphabet: $Y = 2^{I} E$
 - Output alphabet: $\Sigma = 2^{AP} = 2^{I} E^{O}$
- Real program
 - $Y = 2^{1}$

• Never mind that $A_{Y,\psi}$ is alternating...

Automaton labels

- Given $A_{Y,\psi}$, generate A':
 - Y = 2^{| E}
 - Σ **=** 2⁰
 - $\mathscr{L}(A') = \mathscr{L}(A_{\gamma,\psi})$ projected onto 2°
- O(|A|) transformation cover(A)
 - A' accepts <Y^{*},V> ⇔
 A accepts *x-ray*(<Y^{*},V>)

$cover(A_{Y,\psi})$

- $A_{Y,\psi}$ has alphabet $2^{I} \in O = Y \times \Sigma$
 - A' wants alphabet $2^\circ = \Sigma$
- $A_{Y,\psi}$ has state-set Q
 - A' can have Q x Y
- Record ($\upsilon \in Y$) directions in each state of A'
 - Start state $< q_0, v^0 >$
 - $\, \delta'(<\!\! q, \upsilon\!\! >, \sigma) = \delta(q, <\!\! \upsilon, \sigma\!\! >)$
 - Changing (u', q') in δ to (u', <q',u'>) in δ'
 - q is accepted \Rightarrow (q, u) is accepted; and v.v.

Pruning the tree (automaton)

- Y = 2^I E
 - But the program shouldn't see unknown events
- Automaton A over Σ-labeled (X x Y)-trees, generate *narrow_Y*(A) = A' over Σ-labeled Xtrees:
 - A' accepts $<X^*,V> \Leftrightarrow A$ accepts $wide_{\gamma}(<X^*,V>)$
 - Simple:
 - Q = (X x Y); Q' = X
 - $\delta'(q, z) = \delta(q, z)$ replacing (<x,y>, q') with (x, q')

Quick proof of *narrow*_y

- $wide_{Y}(<X^{*},V>) \in \mathscr{L}(A) \Rightarrow <X^{*},V> \in \mathscr{L}(A')$
 - States the same
 - Pick an accepting run, drop the Y component
- $<X^*,V> \in \mathscr{L}(A') \Rightarrow wide_{\gamma}(<X^*,V>) \in \mathscr{L}(A)$
 - Define A" with states Q x Y marking Y direction
 - £(A") = £(A)
 - A run through states in A" can be adjusted to a run in A

Program synthesis

- Create $A_{Y,\psi}$ over $2^{I} \in O$ -labeled $2^{I} \in -$ trees
- Compute A" = narrow_(2^E)(cover(A_{Y,ψ})) over 2^olabeled 2^E-trees
 - <(2[|])[∗], P> ∈ *L*(A'') ⇒ P ψ ⇒ ψ realizable
 - ψ realizable \Rightarrow \exists a computation tree $\in \mathscr{L}(A_{Y,\psi}) \Rightarrow$ x-ray(wide_{(2}E_{)}(<(2^{!})^{*},P>)) $\in \mathscr{L}(A_{Y,\psi}) \Rightarrow$ $wide_{(2}E_{)}(<(2^{!})^{*},P>) \in \mathscr{L}(cover(A_{Y,\psi})) \Rightarrow$ $<(2^{!})^{*},P> \in \mathscr{L}(narrow_{(2}E_{)}(cover(A_{Y,\psi})))$
- Constructive emptiness check

Formally...

Formal Discussion

- A fixpoint-based emptiness check
- CTL program synthesis

Emptiness

- O((mn)³ⁿ) for nondeterministic tree automata [EJ88]
 - m = |A|
 - n = number of pairs in Rabin acceptance condition
 Γ
- Works by model checking (sort of)
 - $-A\Phi_{\Gamma} = A(... (GF(g_{\gamma}) FG(\neg b_{\gamma})) ...)$
 - $i \in \{0 ... m 1\}$

"Model checking" Overview

- Nondeterministic tree automata aren't convenient
- Convert to an AND/OR diagram T, pseudomodel-check
 - |T| is O(|A|)

•
$$\mu Y$$
. $_{\gamma \in \Gamma} AFAG((\neg b_{\gamma} \quad Y) \quad A(Fg_{\gamma} \quad \Phi_{\Gamma/\{\gamma\}}))$

– Φ_{Γ} also adjusted

"Model checking" $A(Fg_{\gamma} \Phi_{\Gamma/\{\gamma\}})$

- LHS: T,s AFq \Leftrightarrow T,s μ x.(q EXAXx)
- val(T, AFg_y) val(T, A $\Phi_{\Gamma/\{y\}}$) doesn't work

- Make it disjoint manually?

• RHS: val(T/val(T, AFg_y), A $\Phi_{\Gamma/\{\gamma\}}$)

- Recursive in other pairs

"Model checking" $AG(g_{\gamma}(Y))$

- $g_{\gamma}(Y) = (\neg B_{\gamma} \quad Y) \quad A(Fg_{\gamma} \quad \Phi_{\Gamma/\{\gamma\}})$
- AGr = vx.(r AXx)
- Determinations from the RHS?
 - $z^{k} = vz.val(z, g_{y}(Y))$ EXAX(z)
 - z is initially val(T, $g_{y}(Y)$)

$$\begin{array}{ll} - \mbox{ T,s } & \mbox{ AGg}_{\gamma}(Y^i) \Rightarrow \\ s \in z^k \Rightarrow \\ \mbox{ T,s } & \mbox{ } \exists \alpha. \mbox{ AGg}_{\gamma}(Y^\alpha) \end{array}$$

Finishing "Model checking"

- $\mu x.(val(T, AG(g_{\gamma}(Y))) EXAXx)$
 - T,s AFAGg_γ(Yⁱ) ⇒ s ∈ val(T, AFAGg_γ(Yⁱ)) ⇒ T,s ∃α.AFAGg_γ(Y^α)
- Do all of that for each $\boldsymbol{\gamma}$
 - O($|\Gamma||T|^2$) sub-checks for $|\Gamma|$ -1 pairs
 - Total work: $O((|\Gamma||T|)^{3|\Gamma|})$

The delightful side-effect

- A good thing: our final fixpoint is a deterministic subgraph satisfying $\psi!$
 - A "Hintikka structure", necessitated by the Small Model Theorem
- Extracted Hintikka structures can be massaged into "transducers"
 - From I to O: a program!

Formal Discussion

- A fixpoint-based emptiness check
- CTL program synthesis

CTL as $\mathscr{L}_{\mathrm{spec}}$

- CTL is very widely used and understood
- Clearer translation
- Simpler than CTL^{*} ⇒ improved complexity
 - Less expressive...

The automaton

- A_{ψ} over 2¹ ^o-labeled 2¹-trees
 - $O(|\psi|)$ states
 - $q_{_0}$, { *cl*(ψ) x { \exists , \forall } }
 - Büchi acceptance condition
 - A_{ψ} accepts <T,V> \Leftrightarrow wide'₂ (<T,V>) ψ
 - Transition function δ as in Yoram and Shahar's presentation
 - Adjusted for modes

The pre-transition relation δ^\prime

- $\delta'(, \sigma) : cl(\psi) \ge 2^{|e|} \xrightarrow{e} O \longrightarrow B^+(2^{|e|} \ge Q)$
 - $-\delta'(p \in I \quad E \oplus, \sigma) = p \quad \sigma$
 - Logical connectives carry through
 - MX becomes (, M)
 - over inputs for E, over inputs for A
 - M[$_1 U$ $_2]$ becomes the usual or/recursive and
 - Same input connectives as X
 - MG is the same as M[true U]

The transition relation δ

• For $\in cl(\psi)$ and $\upsilon \in 2^{I-O}$

$$-\delta(<, M>, U) = \delta'(, U T)$$

- $M = \exists$: over all τ in 2^{E}
- M = \forall : over all τ in 2^{E}
- $\delta(q_0, \upsilon) = \delta'(\psi, \upsilon)$
- Some reductions:
 - $p \in E$ can be reduced to true/false for \exists / \forall
 - EX and AX are δ' regardless of state mode

2^I-exhaustiveness

- Recall: A_{ψ} accepts <T,V> \Leftrightarrow wide'₂E(<T,V>) ψ
- V need not be 2^I-exhaustive
 - $-i.e. V(w) 2^{i} dir(w) 2^{i}$

– A_{ψ} accepts incomplete computation trees

• Good news: X-exhaustiveness is regular!

– Build an automaton A_{exh}

Emptiness for Nondeterministic Büchi Tree Automata

- Büchi condition allows for PTIME method [VW84]
- Finds Hintikka structures

CTL program synthesis

- Generate A_{ψ} (alternating)
- Cross with A_{exh} (nondeterministic)
- Perform constructive emptiness test
- EXPTIME
 - Exponential blowup on conversion from alternating to nondeterministic
 - Polynomial emptiness check

Discussion

- Useful?
- Tractable?
- Implementation?