
Michael Greenberg
Technion, Spring 2006

Synthesis with Incomplete
Information

Orna Kupferman, Moshe Vardi
2nd International Conference on Temporal Logic, 1997

Michael Greenberg
Technion, Spring 2006

Introduction

● What is verification?
– Check whether program P specification ψ

● Potentially use counterexamples to refine and recheck

● When do we get ψ and P?

Michael Greenberg
Technion, Spring 2006

Program synthesis

● synth : specification ψ → program P
– such that P ψ

● What is ψ?
– Straight-line vs. reactive

● Temporal logic

Michael Greenberg
Technion, Spring 2006

Temporal logic for program
synthesis

● Linear or branching time?
– CTL describes trees, viz. unfolded programs
– LTL describes words, viz. computations

● CTL*

– General method using standard constructions
– synth(ψ) : CTL* → program P

● (s.t. P ψ)

Michael Greenberg
Technion, Spring 2006

What are our specifications?

● Quantification
– x is the input
– y is the output

∀x y.∀ ψ? x y.∀ ∃ ψ? x y.∃ ∀ ψ? x y.∃ ∃ ψ?
● Complete, open module: x y.∀ ∃ ψ

– In fact: x y.A∀ ∃ ψ
● Is every ψ CTL* ∈ realizable?

– ψ = x ¬x

Michael Greenberg
Technion, Spring 2006

A money-making proposal

Step 1: ψ = G(Fx ⇔ y)

Step 2: ???

Step 3: Profit!
● What is wrong with x y.AG(Fx ∀ ∃ ⇔ y)?

● Satisfiable: let y be Fx.
● Valid: is satisfiable and has no free variables.

Michael Greenberg
Technion, Spring 2006

The program synthesis hydra

● Two problems
– Identification of realizability
– Realization (read “program synthesis”)

Michael Greenberg
Technion, Spring 2006

Realizability

● A formula ψ CTL∈ * is realizable iff there exists
a program P such that P ψ
– Any (deterministic) program P can be seen as a

strategy function P : (2I)* → 2O

Michael Greenberg
Technion, Spring 2006

Incomplete information

● With “incomplete information”, there are two
disjoint sets of input signals, I and E
– I is known
– E is unknown

● Iterative realizability checks
● I E = S

● Strategy functions see only I

Michael Greenberg
Technion, Spring 2006

Informal discussion

● Trees
● Tree automata
● Emptiness checks
● Program synthesis

Michael Greenberg
Technion, Spring 2006

Trees

● For a finite set Υ, an Υ-tree is a set T Υ⊆
– s.t. x∙v T v Υ x T∈ ∈ ⇒ ∈

● dir(x∙v) ≡ v ; dir(ε) = v0

● T is a full infinite tree iff T = Υ*

● For finite sets Υ and Σ, a Σ-labeled Υ-tree is a
pair <T, V>
– T is an Υ-tree
– V : T → Σ

Michael Greenberg
Technion, Spring 2006

Tree operators: x-ray

● x-ray(<T, V>) is an (Υ x Σ)-labeled Υ-tree <T',
V'>
– s.t. V'(x) = <dir(x), V(x)>

Michael Greenberg
Technion, Spring 2006

Tree operators: hide and wide

● hide
Y
(T (X x Y)⊆ *) = T' X⊆ * replacing each

letter <x, y> with the letter x

● wide
Y
(<T X*,V>) = <T', V'>⊆

– s.t. T' (X x Y)⊆ * is a full infinite tree and V'(w) =
V(hide

Y
(w))

Michael Greenberg
Technion, Spring 2006

Tree operators: fat

● fat
y
 is a generalization of wide

Y

● fat
y
(<T X⊆ *,V>) = { <T' X⊆ * x Y*,V'> |

V'(ε) X = V(ε)
w (X∀ ∈ * x Y*)+ . V'(w) = V(hideY(w)) (dir(w) E) }

● wide'
y
(<T,V>) ∈ fat

y
(<T,V>)

– V'(ε) = V(ε)

– If V is X-exhaustive:

● wide'
y
(<T,V>) = x-ray(wide

y
(<T,V>))

Michael Greenberg
Technion, Spring 2006

Computation trees

● Given a full infinite 2I-tree, a program P induces
a 2O-labeled tree <(2I)*, P>

● Add in E: <(2I E)*, P'> = wide
(2

E
)
(<(2I)*, P>)

● A computation tree is the 2I E O-labeled tree

<(2I E)*, P''> = x-ray(<(2I E)*, P'>)

Michael Greenberg
Technion, Spring 2006

Informal discussion

● Trees
● Tree automata
● Emptiness checks
● Program synthesis

Michael Greenberg
Technion, Spring 2006

Tree automata

● Seen during Yoram and Shahar's presentation
of CTL automata

● Alternating form equivalent to ℒμ [EJ91]
– CTL* is contained, of course

● δ : Q x Σ → B+(Υ x Q)
– A state has transitions for a given input label
– Boolean formula over the tree direction and next

states

Michael Greenberg
Technion, Spring 2006

CTL* automata

● Automaton A
Υ,ψ

 from ψ CTL∈ * and a set Υ

– O(2|ψ|) states
– 2-pair acceptance condition

● Accepts computation trees
– 2AP-labeled Υ-trees <T, V>

● AP = I E O
● Υ = 2I E

– ℒ(A
Υ,ψ

) = {<T, V> | <T, V> ψ}

Michael Greenberg
Technion, Spring 2006

Informal discussion

● Trees
● Tree automata
● Emptiness checks
● Program synthesis

Michael Greenberg
Technion, Spring 2006

Our problem, formally

● Given a CTL* formula ψ over AP = I E O
(disjoint), is there a program P such that its
computation tree satisfies ψ?

● Given a tree automaton A accepting only trees
that satisfy ψ, is (A) empty?ℒ
– Realizability only?

Michael Greenberg
Technion, Spring 2006

Emptiness (informally)

● ℒ(A) ≠ <T,V> s.t. A accepts <T,V>∅ ⇔ ∃
– A accepts <T,V> a run of A on <T,V> that ⇔ ∃

accepts
– This run makes “determinations”

● Given regular determinations, we have a
deterministic tree automaton on Υ-trees labeled
by Σ
– Υ = 2I

– Σ = 2O

Michael Greenberg
Technion, Spring 2006

Informal discussion

● Trees
● Tree automata
● Emptiness checks
● Program synthesis

● Break!
● Program synthesis

Michael Greenberg
Technion, Spring 2006

The synthesis theorem

Given an alternating tree automaton A over Σ-
labeled Υ-trees, the following are equivalent:

● A is nonempty.
● There is a finite-state strategy f : Υ* → Σ

– s.t. <Υ*,f> (A)∈ ℒ

Nonemptiness algorithms can be extended to
generate this strategy.

Michael Greenberg
Technion, Spring 2006

Programs?

● Emptiness checks can generate “programs”
– Input alphabet: Υ = 2I E

– Output alphabet: Σ = 2AP = 2I E O

● Real program
– Υ = 2I

– Σ = 2O

● Never mind that A
Υ,ψ

 is alternating...

Michael Greenberg
Technion, Spring 2006

Automaton labels

● Given A
Υ,ψ

, generate A':

– Υ = 2I E

– Σ = 2O

– ℒ(A') = (Aℒ
Υ,ψ

) projected onto 2O

● O(|A|) transformation cover(A)
– A' accepts <Υ*,V> ⇔

A accepts x-ray(<Υ*,V>)

Michael Greenberg
Technion, Spring 2006

cover(A
Υ,ψ

)

● A
Υ,ψ

 has alphabet 2I E O = Υ x Σ

– A' wants alphabet 2O = Σ

● A
Υ,ψ

 has state-set Q

– A' can have Q x Υ
● Record (υ Υ) directions in each state of A' ∈

– Start state <q
0
,v0>

– δ'(<q,υ>, σ) = δ(q, <υ,σ>)
● Changing (υ', q') in δ to (υ', <q',υ'>) in δ'

– q is accepted (q, υ) is accepted; and v.v.⇒

Michael Greenberg
Technion, Spring 2006

Pruning the tree (automaton)

● Υ = 2I E

– But the program shouldn't see unknown events
● Automaton A over Σ-labeled (X x Y)-trees,

generate narrow
Y
(A) = A' over Σ-labeled X-

trees:

– A' accepts <X*,V> A accepts ⇔ wide
Y
(<X*,V>)

– Simple:
● Q = (X x Y); Q' = X
● δ'(q, z) = δ(q, z) replacing (<x,y>, q') with (x, q')

Michael Greenberg
Technion, Spring 2006

Quick proof of narrow
Y

● wide
Y
(<X*,V>) (A) <X∈ ℒ ⇒ *,V> (A')∈ ℒ

– States the same
– Pick an accepting run, drop the Y component

● <X*,V> (A') ∈ ℒ ⇒ wide
Y
(<X*,V>) (A)∈ ℒ

– Define A'' with states Q x Y marking Y direction
● ℒ(A'') = (A)ℒ

– A run through states in A'' can be adjusted to a run
in A

Michael Greenberg
Technion, Spring 2006

Program synthesis

● Create A
Υ,ψ

over 2I E O-labeled 2I E-trees

● Compute A'' = narrow
(2

E
)
(cover(A

Υ,ψ
)) over 2O-

labeled 2E-trees
– <(2I)*,P> (A'') P ψ ψ realizable∈ℒ ⇒ ⇒
– ψ realizable ⇒

 a computation tree (A∃ ∈ℒ
Υ,ψ

) ⇒
x-ray(wide

(2
E

)
(<(2I)*,P>)) (A∈ℒ

Υ,ψ
) ⇒

wide
(2
E

)
(<(2I)*,P>) (∈ℒcover(A

Υ,ψ
)) ⇒

<(2I)*,P> (∈ℒnarrow
(2
E

)
(cover(A

Υ,ψ
)))

● Constructive emptiness check

Michael Greenberg
Technion, Spring 2006

Formally...

Michael Greenberg
Technion, Spring 2006

Formal Discussion

● A fixpoint-based emptiness check
● CTL program synthesis

Michael Greenberg
Technion, Spring 2006

Emptiness

● O((mn)3n) for nondeterministic tree automata
[EJ88]
– m = |A|
– n = number of pairs in Rabin acceptance condition

Γ
● Works by model checking (sort of)

– AΦ
Γ
= A(... (GF(g

γ
) FG(¬b

γ
)) ...)

● i { 0 ... m – 1 }∈

Michael Greenberg
Technion, Spring 2006

“Model checking” Overview

● Nondeterministic tree automata aren't
convenient

● Convert to an AND/OR diagram T, pseudo-
model-check
– |T| is O(|A|)

● μY.
γ Γ ∈ AFAG((¬b

γ
 Y) A(Fg

γ
 Φ

Γ/{γ}
))

– Φ
Γ
 also adjusted

– T,s AΦ
Γ
 T,s i.Y⇔ ∃ i, i ≤ |T|

Michael Greenberg
Technion, Spring 2006

“Model checking” A(Fg
γ
 Φ

Γ/{γ}
)

● LHS: T,s AFq T,s μx.(q EXAXx)⇔
● val(T, AFg

γ
) val(T, AΦ

Γ/{γ}
) doesn't work

– Make it disjoint manually?

● RHS: val(T/val(T, AFg
γ
), AΦ

Γ/{γ}
)

– Recursive in other pairs

Michael Greenberg
Technion, Spring 2006

“Model checking” AG(g
γ
(Y))

● g
γ
(Y) = (¬B

γ
 Y) A(Fg

γ
 Φ

Γ/{γ}
)

● AGr = νx.(r AXx)
● Determinations from the RHS?

– zk = νz.val(z, g
γ
(Y)) EXAX(z)

● z is initially val(T, g
γ
(Y))

– T,s AGg
γ
(Yi) ⇒

s z∈ k ⇒
T,s ∃α.AGg

γ
(Yα)

Michael Greenberg
Technion, Spring 2006

Finishing “Model checking”

● μx.(val(T, AG(g
γ
(Y))) EXAXx)

– T,s AFAGg
γ
(Yi) ⇒

s val(T, ∈ AFAGg
γ
(Yi)) ⇒

T,s ∃α.AFAGg
γ
(Yα)

● Do all of that for each γ

– O(|Γ||T|2) sub-checks for |Γ|-1 pairs
– Total work: O((|Γ||T|)3|Γ|)

Michael Greenberg
Technion, Spring 2006

The delightful side-effect

● A good thing: our final fixpoint is a deterministic
subgraph satisfying ψ!
– A “Hintikka structure”, necessitated by the Small

Model Theorem
● Extracted Hintikka structures can be massaged

into “transducers”
– From I to O: a program!

Michael Greenberg
Technion, Spring 2006

Formal Discussion

● A fixpoint-based emptiness check
● CTL program synthesis

Michael Greenberg
Technion, Spring 2006

CTL as ℒ
spec

● CTL is very widely used and understood
● Clearer translation
● Simpler than CTL* improved complexity⇒

– Less expressive...

Michael Greenberg
Technion, Spring 2006

The automaton

● A
ψ
 over 2I O-labeled 2I-trees

– O(|ψ|) states
● q

0
, { cl(ψ) x { , } }∃ ∀

– Büchi acceptance condition
● A

ψ
 accepts <T,V> ⇔wide'

2
E(<T,V>) ψ

– Transition function δ as in Yoram and Shahar's
presentation

● Adjusted for modes

Michael Greenberg
Technion, Spring 2006

The pre-transition relation δ'

● δ'(,σ) : cl(ψ) x 2I E O → B+(2I x Q)
– δ'(p I E O, σ) = p σ∈ ∈
– Logical connectives carry through
– MX becomes (, M)

● over inputs for E, over inputs for A

– M[
1
 U

2
] becomes the usual or/recursive and

● Same input connectives as X

– MG is the same as M[true U]

Michael Greenberg
Technion, Spring 2006

The transition relation δ

● For ∈ cl(ψ) and υ 2∈ I O

– δ(<, M>, υ) = δ'(, υ τ)
● M = : over all τ in 2∃ E

● M = : over all τ in 2∀ E

● δ(q
0
, υ) = δ'(ψ, υ)

● Some reductions:
– p E can be reduced to true/false for /∈ ∃ ∀
– EX and AX are δ' regardless of state mode

● δ(<EX , M>, υ) = δ'(EX , υ)

Michael Greenberg
Technion, Spring 2006

2I-exhaustiveness

● Recall: A
ψ
 accepts <T,V> ⇔wide'

2
E(<T,V>) ψ

● V need not be 2I-exhaustive

– i.e. V(w) 2I dir(w) 2I

– A
ψ
 accepts incomplete computation trees

● Good news: X-exhaustiveness is regular!

– Build an automaton A
exh

Michael Greenberg
Technion, Spring 2006

Emptiness for Nondeterministic
Büchi Tree Automata

● Büchi condition allows for PTIME method
[VW84]

● Finds Hintikka structures

Michael Greenberg
Technion, Spring 2006

CTL program synthesis

● Generate A
ψ
 (alternating)

● Cross with A
exh

 (nondeterministic)

● Perform constructive emptiness test
● EXPTIME

– Exponential blowup on conversion from alternating
to nondeterministic

– Polynomial emptiness check

Michael Greenberg
Technion, Spring 2006

Discussion

● Useful?
● Tractable?
● Implementation?

