Synthesis with Incomplete
Information

Orna Kupferman, Moshe Vardi

2nd International Conference on Temporal Logic, 1997

Michael Greenberg

Technion, Spring 2006

Introduction

e \What is verification?

— Check whether program P specification y
* Potentially use counterexamples to refine and recheck

* WWhen do we get y and P?

Michael Greenberg

Technion, Spring 2006

Program synthesis

* synth . specification y — program P
-suchthatP y

* What is p?
- Straight-line vs. reactive

* Temporal logic

Michael Greenberg

Technion, Spring 2006

Temporal logic for program
synthesis

* Linear or branching time?

- CTL describes trees, viz. unfolded programs
- LTL describes words, viz. computations

e CTL
- General method using standard constructions
- synth(yp) : CTL" — program P
e (st.P)

Michael Greenberg

Technion, Spring 2006

What are our specifications?

e Quantification
- X Is the input
-y is the output
VxVyw? Vx3y.w? IxVyw? Ix3Ay.yw?
» Complete, open module: Vx3y.y
- In fact: Vx3y. Ay
* |s every Yy € CTL” realizable?
-P=Xx X

Michael Greenberg

Technion, Spring 2006

A money-making proposal

Step 1: ¢ = G(Fx < v)

Step 2: ?7?7?

Step 3: Profit!

* What is wrong with Vx3ay.AG(Fx < vy)?

e Satisfiable: let y be Fx.
e \/alid: is satisfiable and has no free variables.

Michael Greenberg

Technion, Spring 2006

The program synthesis hydra

* Two problems

- Identification of realizability
- Realization (read “program synthesis”)

Michael Greenberg

Technion, Spring 2006

Realizability

 Aformula py € CTL is realizable iff there exists
a program P such thatP y

— Any (deterministic) program P can be seen as a
strategy function P : (2')* — 2°

Michael Greenberg

Technion, Spring 2006

Incomplete information

* With “incomplete information”, there are two
disjoint sets of input signals, | and E

- | Is known

- E Is unknown

* |terative realizability checks
el E=S

e Strategy functions see only |

Michael Greenberg

Technion, Spring 2006

Informal discussion

* Trees

* Tree automata

* Emptiness checks
* Program synthesis

Michael Greenberg

Technion, Spring 2006

Trees

* Forafinite setY, an Y-treeisasetT € Y
-st.xvel veY=xel

o dir(x-v) = v ; dir(g) = V°

T is a full infinite tree iff T =Y

e For finite sets Y and 2, a 2-labeled Y-tree is a
pair <T, V>

- T is an Y-tree
-V:T o2

Michael Greenberg

Technion, Spring 2006

Tree operators: x-ray

» x-ray(<T, V>)is an (Y x X)-labeled Y-tree <T',
V'>
- s.t. V'(x) = <din(x), V(x)>

Michael Greenberg

Technion, Spring 2006

Tree operators: hide and wide

 hide (T = (XxY)) =T < X replacing each
letter <x, y> with the letter x
o wide (<T € X*,V>)=<T', V>

- s.t. T' = (XxY) is a full infinite tree and V'(w) =
V(hide (w))

Michael Greenberg

Technion, Spring 2006

Tree operators: fat

o fat is a generalization of wide,

. faty(<T c X,V>)={<T' = XxY ,V>|

V'(e) X =V(g)

Vw e (X'x Y')*. V'(w) = V(hide (w)) (dirlw) E)}
» wide' (<T,V>) e fat (<T,V>)

- V'(g) = V(¢)
- |f V is X-exhaustive:
o wide' (<T,V>) = x-ray(wide (<T,V>))

Michael Greenberg

Technion, Spring 2006

Computation trees

* Given a full infinite 2'-tree, a program P induces
a 2°-labeled tree <(2')’, P>

« Addin E: <(2" F), P> = wide k,(<(2'), P>)

A computation tree is the 2' £ ©-labeled tree
<(2' B), P">=x-ray(<(2' E), P'>)

Michael Greenberg

Technion, Spring 2006

Informal discussion

* Trees

* Tree automata

* Emptiness checks
* Program synthesis

Michael Greenberg

Technion, Spring 2006

Tree automata

* Seen during Yoram and Shahar's presentation
of CTL automata

* Alternating form equivalent to -2’y [EJ91]
- CTL is contained, of course

¢ 5:QXxZI - B(Y xQ)
- A state has transitions for a given input label

- Boolean formula over the tree direction and next
states

Michael Greenberg

Technion, Spring 2006

CTL automata

o Automaton A, from y e CTL and a setY

- O(2¥) states
— 2-pair acceptance condition

* Accepts computation trees

- 2°P-labeled Y-trees <T, V>
eAP=] E O
oY =2 E

- Z(A,) ={<T, V> [<T, V> yj}

Michael Greenberg

Technion, Spring 2006

Informal discussion

* Trees

* Tree automata

* Emptiness checks
* Program synthesis

Michael Greenberg

Technion, Spring 2006

Our problem, formally

e Givena CTL formulawoverAP=1 E O
(disjoint), is there a program P such that its
computation tree satisfies p?

* Given a tree automaton A accepting only trees
that satisfy y, is Z(A) empty?

- Realizability only?

Michael Greenberg

Technion, Spring 2006

Emptiness (informally)

e Z/(A)# 0 < 3I<T,V>s.t. A accepts <T,V>

- A accepts <T,V> < d arun of A on <T,V> that
accepts

— This run makes “determinations”

* Given regular determinations, we have a
deterministic tree automaton on Y-trees labeled
by 2

-Y=2
~ 3 =920

Michael Greenberg

Technion, Spring 2006

Informal discussion

* Trees

* Tree automata

* Emptiness checks
* Program synthesis

* Break!

* Program synthesis

Michael Greenberg

Technion, Spring 2006

The synthesis theorem

Given an alternating tree automaton A over -
labeled Y-trees, the following are equivalent:

* Ais nonempty.
* There is a finite-state strategy f: Y* — 2
- s.t. <Y*f> e Z(A)

Nonemptiness algorithms can be extended to
generate this strategy.

Michael Greenberg

Technion, Spring 2006

Programs?

* Emptiness checks can generate “programs’
- Input alphabet: Y = 2! E
- Qutput alphabet: 2 =2AF=2! E O
* Real program
-Y =2
— z — 20
» Never mind that A, is alternating...

Michael Greenberg

Technion, Spring 2006

Automaton labels

o Given A, , generate A"
Y
~Y=2 E
— z — 20
- Z(A) = Z(A) projected onto 2°
* O(|Al) transformation cover(A)

- A" accepts <Y',V> <
A accepts x-ray(<Y',V>)

Michael Greenberg

Technion, Spring 2006

cover(A,)

e A, hasalphabet2' = °=Yx2
W

- A" wants alphabet 2° = 2
e A, has state-set Q

- A'canhave QxY
* Record (U € Y) directions in each state of A

- Start state <q,,v>

- 0'(<q,u>, 0) = 0(q, <u,0>)
* Changing (U', ') in d to (U', <q',u'>) in &'
- qis accepted = (q, u) is accepted; and v.v.

Michael Greenberg

Technion, Spring 2006

Pruning the tree (automaton)

o Y =2l E
- But the program shouldn't see unknown events

 Automaton A over 2-labeled (X x Y)-trees,
generate narrow (A) = A’ over 2-labeled X-

trees:
- A accepts <X',V> < A acceptswide (<X ,V>)
- Simple:

*Q=(XxY); Q=X
* 0'(q, z) = 0(q, z) replacing (<x,y>, q') with (x, q')

Michael Greenberg

Technion, Spring 2006

Quick proof of narrow,,

. wide (<X'V>) € Z(A) = <X V> € Z(A)

- States the same
- Pick an accepting run, drop the Y component

o <X,V>e Z(A') = wide (<X ,V>) € Z(A)

- Define A" with states Q x Y marking Y direction
* Z(A") = Z(A)

- A run through states in A" can be adjusted to a run
in A

Michael Greenberg

Technion, Spring 2006

Program synthesis

 Create A, over2' = ©-labeled2' "-trees

» Compute A" = narrow e (cover(A,)) over 2°-
labeled 2F-trees
- <2y,P>e LX(A")=P = yrealizable

- Y realizable =

J a computation tree € Z(A) =
x-ray(wide E(<(2'),P>)) € Z(A) =
wide ,E (<(2'),P>) € Zover(A,)) =

(27) W

<(2),P> e Zparrow E(cover(A,)))
* Constructive emptiness check

Michael Greenberg

Technion, Spring 2006

Formally...

Michael Greenberg

Technion, Spring 2006

Formal Discussion

* A fixpoint-based emptiness check
* CTL program synthesis

Michael Greenberg

Technion, Spring 2006

Emptiness

* O((mn)°") for nondeterministic tree automata
[EJ88]

-m= |A|
- n = number of pairs in Rabin acceptance condition
-

* Works by model checking (sort of)
- A®.=A(.. (GF(g) FG(b)) ..)
eic{0..m-1}

Michael Greenberg

Technion, Spring 2006

"Model checking” Overview

e Nondeterministic tree automata aren't
convenient

* Convert to an AND/OR diagram T, pseudo-
model-check

= [Tlis O(|Al)

* pY. L AFAG((“b, Y) A(Fg, @
- ®_ also adjusted
-Ts AP <=Ts 3iY,is|T|

r/{V}))

Michael Greenberg

Technion, Spring 2006

‘Model checking” A(Fg, &,)

e |HS: T,s AFgqeT,s ux.(q EXAXX)
e val(T, AFg) val(T, A®

- Make it disjoint manually?
« RHS: val(T/val(T, AFg), A®

- Recursive in other pairs

) doesn't work

I/ {Y})

Michael Greenberg

Technion, Spring 2006

“Model checking’ AG(gY(Y))

e g(Y)=(B, Y) A(Fg, o
e AGr=vx.(r AXX)
* Determinations from the RHS?
- z=vzval(z, g (Y)) EXAX(z)
e zis initially val(T, g (Y))
-T,s AGgY(Y‘) =

Sezk=
s Ja.AGg (Y°)

r/{\/})

Michael Greenberg

Technion, Spring 2006

Finishing “Model checking”

e ux.(val(T, AG(gY(Y))) EXAXX)
-T.s AFAGQ (Y') =
s € val(T, AFAGg,(Y')) =
T,s da.AFAGg (Y?)
* Do all of that for each y
- O(|l']|T|?) sub-checks for |[['|-1 pairs
- Total work: O((|I'||T])*™)

Michael Greenberg

Technion, Spring 2006

The delightful side-effect

* A good thing: our final fixpoint is a deterministic
subgraph satisfying y!

- A “Hintikka structure”, necessitated by the Small
Model Theorem

* Extracted Hintikka structures can be massaged
into “transducers”

- From | to O: a program!

Michael Greenberg

Technion, Spring 2006

Formal Discussion

* A fixpoint-based emptiness check
* CTL program synthesis

Michael Greenberg

Technion, Spring 2006

CTLas .~

spec

e CTL is very widely used and understood
* Clearer translation

e Simpler than CTL" = improved complexity
- Less expressive...

Michael Greenberg

Technion, Spring 2006

The automaton

o Aw over 2! ©-labeled 2'-trees

- O(|w]) states
* gy { clw)x{3, V}}
- Buchi acceptance condition
A, accepts <T,V> o wide'g(<T,V>) y

- Transition function ® as in Yoram and Shahar's
presentation

* Adjusted for modes

Michael Greenberg

Technion, Spring 2006

The pre-transition relation o'

e d'(,0):clly)x2' E ©— B*(2'x Q)
-0 (pel E®©,0)=p o
- Logical connectives carry through

- MX becomes(, M)
e overinputs for E, overinputs for A

- M[, U] becomes the usual or/recursive and

e Same input connectives as X
- MG is the same as M[true U |

1

Michael Greenberg

Technion, Spring 2006

The transition relation ©

e For e€cly)andue?2' ©
-0(<, M>u)=0(,u 1)

e M=3: overall Tin 2F
eM=VY: overalltinZ

* 0(q,, V) =0(y, u)

e Some reductions:

- p € E can be reduced to true/false for 3/V
- EX and AX are @' regardless of state mode
« 5(<EX , M>, u)=8'(EX ,u)

Michael Greenberg

Technion, Spring 2006

2'-exhaustiveness

e Recall: A, accepts <T,V> o wide' E(<T,V>)
* V need not be 2'-exhaustive

-i.e.V(w) 2" dinw) 2

- ALp accepts incomplete computation trees

* Good news: X-exhaustiveness is regular!
- Build an automaton A_

Michael Greenberg

Technion, Spring 2006

Emptiness for Nondeterministic
Buchi Tree Automata

e Buchi condition allows for PTIME method
[VIW84]

* Finds Hintikka structures

Michael Greenberg

Technion, Spring 2006

CTL program synthesis

 Generate A (alternating)
o Cross with A_ . (nondeterministic)

* Perform constructive emptiness test
e EXPTIME

- Exponential blowup on conversion from alternating
to nondeterministic

- Polynomial emptiness check

Michael Greenberg

Technion, Spring 2006

Discussion

e Useful?
 Tractable?
* Implementation?

Michael Greenberg

Technion, Spring 2006

