Synthesis with Incomplete Information

Orna Kupferman, Moshe Vardi
2nd International Conference on Temporal Logic, 1997
Introduction

- What is verification?
 - Check whether program P specification \(\psi \)
 - Potentially use counterexamples to refine and recheck
- When do we get \(\psi \) and P?
Program synthesis

• $\textit{synth} : \text{specification } \psi \rightarrow \text{program } P$
 – such that $P \models \psi$

• What is ψ?
 – Straight-line vs. reactive

• Temporal logic
Temporal logic for program synthesis

• Linear or branching time?
 – CTL describes trees, viz. unfolded programs
 – LTL describes words, viz. computations

• CTL*
 – General method using standard constructions
 – synth(ψ) : CTL* → program P
 • (s.t. P \models ψ)
What are our specifications?

- Quantification
 - x is the input
 - y is the output
 \[\forall x \forall y. \psi \lor \forall x \exists y. \psi \lor \exists x \forall y. \psi \lor \exists x \exists y. \psi \]

- Complete, open module: \(\forall x \exists y. \psi \)
 - In fact: \(\forall x \exists y. A \psi \)

- Is every \(\psi \in \text{CTL}^* \) realizable?
 - \(\psi = x \lor \neg x \)
A money-making proposal

Step 1: $\psi = G(Fx \iff y)$

Step 2: ???

Step 3: Profit!

- What is wrong with $\forall x \exists y. AG(Fx \iff y)$?
 - Satisfiable: let y be Fx.
 - Valid: is satisfiable and has no free variables.
The program synthesis hydra

• Two problems
 – Identification of realizability
 – Realization (read “program synthesis”)
Realizability

- A formula $\psi \in \text{CTL}^*$ is realizable \emph{iff} there exists a program P such that $P \models \psi$
 - Any (deterministic) program P can be seen as a \textit{strategy function} $P : (2^I)^* \rightarrow 2^O$
Incomplete information

• With “incomplete information”, there are two disjoint sets of input signals, I and E
 – I is known
 – E is unknown
 • Iterative realizability checks
 • I \ E = S

• Strategy functions see only I

Michael Greenberg
Technion, Spring 2006
Informal discussion

• Trees
• Tree automata
• Emptiness checks
• Program synthesis
Trees

- For a finite set Y, an Y-tree is a set $T \subseteq Y$ such that $x \cdot v \in T \quad v \in Y \Rightarrow x \in T$

- $\text{dir}(x \cdot v) \equiv v$; $\text{dir}(\varepsilon) = v^0$

- T is a *full infinite tree* iff $T = Y^*$

- For finite sets Y and Σ, a Σ-labeled Y-tree is a pair $<T, V>$
 - T is an Y-tree
 - $V : T \rightarrow \Sigma$
Tree operators: x-ray

- \textit{x-ray}(<T, V>) is an \((Y \times \Sigma)\)-labeled \(Y\)-tree \(<T', V'>\)
 - s.t. \(V'(x) = <\text{dir}(x), V(x)>\)
Tree operators: *hide* and *wide*

1. \(\text{hide}_Y(T \subseteq (X \times Y)^*) = T' \subseteq X^*\) replacing each letter \(<x, y>\) with the letter \(x\)

2. \(\text{wide}_Y(<T \subseteq X^*, V>) = <T', V'>\)
 - s.t. \(T' \subseteq (X \times Y)^*\) is a full infinite tree and \(V'(w) = V(\text{hide}_Y(w))\)
Tree operators: \textit{fat}

- \textit{fat}_Y is a generalization of \textit{wide}_Y

- \textit{fat}_Y(\langle T \subseteq X^*, V \rangle) = \{ \langle T' \subseteq X^* \times Y^*, V' \rangle \mid
 V'(\varepsilon) = V(\varepsilon)
 \forall w \in (X^* \times Y^*)^+. V'(w) = V(\text{hide}_Y(w)) (\text{dir}(w) E) \}

- \textit{wide}'_Y(\langle T, V \rangle) \in \textit{fat}_Y(\langle T, V \rangle)
 - V'(\varepsilon) = V(\varepsilon)
 - If V is X-exhaustive:
 - \textit{wide}'_Y(\langle T, V \rangle) = \textit{x-ray}(\textit{wide}_Y(\langle T, V \rangle))
Computation trees

- Given a full infinite 2^I-tree, a program P induces a 2^O-labeled tree $<(2^I)^*, P>$
- Add in E: $<(2^I^E)^*, P'> = wide_{(2^E)}((2^I)^*, P>)$
- A computation tree is the $2^I^E^O$-labeled tree $<(2^I^E)^*, P''> = x-ray((2^I^E)^*, P'>)$
Informal discussion

• Trees
• Tree automata
• Emptiness checks
• Program synthesis
Tree automata

- Seen during Yoram and Shahar's presentation of CTL automata
- Alternating form equivalent to $L\mu$ [EJ91]
 - CTL* is contained, of course
- $\delta : Q \times \Sigma \rightarrow B^+(Y \times Q)$
 - A state has transitions for a given input label
 - Boolean formula over the tree direction and next states
CTL* automata

- Automaton $A_{\Upsilon, \psi}$ from $\psi \in CTL^*$ and a set Υ
 - $O(2^{\vert \psi \vert})$ states
 - 2-pair acceptance condition
- Accepts computation trees
 - 2^{AP}-labeled Υ-trees $<T, V>$
 - $AP = I \ E \ O$
 - $\Upsilon = 2^I \ E$
 - $L(A_{\Upsilon, \psi}) = \{<T, V> | <T, V> \models \psi\}$
Informal discussion

- Trees
- Tree automata
- Emptiness checks
- Program synthesis
Our problem, formally

- Given a CTL* formula ψ over $\text{AP} = \text{I} \quad \text{E} \quad \text{O}$ (disjoint), is there a program P such that its computation tree satisfies ψ?

- Given a tree automaton A accepting only trees that satisfy ψ, is $\mathcal{L}(A)$ empty?
 - Realizability only?
Emptiness (informally)

- $\mathcal{L}(A) \neq \emptyset \iff \exists <T,V> \text{ s.t. } A \text{ accepts } <T,V>$
 - $A \text{ accepts } <T,V> \iff \exists \text{ a run of } A \text{ on } <T,V> \text{ that accepts}$
 - This run makes “determinations”

- Given regular determinations, we have a deterministic tree automaton on Y-trees labeled by Σ
 - $Y = 2^I$
 - $\Sigma = 2^O$
Informal discussion

- Trees
- Tree automata
- Emptiness checks
- Program synthesis

Break!
- Program synthesis
The synthesis theorem

Given an alternating tree automaton A over Σ-labeled Υ-trees, the following are equivalent:

- A is nonempty.
- There is a finite-state strategy $f : \Upsilon^* \to \Sigma$
 - s.t. $<\Upsilon^*, f> \in \mathcal{L}(A)$

Nonemptiness algorithms can be extended to generate this strategy.
Programs?

• Emptiness checks can generate “programs”
 – Input alphabet: $Y = 2^1$
 – Output alphabet: $\Sigma = 2^{AP} = 2^1$
• Real program
 – $Y = 2^1$
 – $\Sigma = 2^O$
• Never mind that $A_{Y,\psi}$ is alternating...
Automaton labels

• Given $A_{\gamma,\psi}$, generate A':
 - $\gamma = 2^I$ \(\forall\)
 - $\Sigma = 2^O$
 - $L(A') = L(A_{\gamma,\psi})$ projected onto 2^O

• $O(|A|)$ transformation $\text{cover}(A)$
 - A' accepts $<\gamma^*,V> \iff$
 A accepts $x\text{-ray}(<\gamma^*,V>)$
cover(\(A_{Y,\psi}\))

- \(A_{Y,\psi}\) has alphabet \(2^I \ E \ O = Y \times \Sigma\)
 - \(A'\) wants alphabet \(2^O = \Sigma\)
- \(A_{Y,\psi}\) has state-set \(Q\)
 - \(A'\) can have \(Q \times Y\)
- Record (\(u \in Y\)) directions in each state of \(A'\)
 - Start state \(<q_0, v^0>\)
 - \(\delta'(\langle q, u \rangle, \sigma) = \delta(q, \langle u, \sigma \rangle)\)
 - Changing (\(u', q'\)) in \(\delta\) to (\(u', \langle q', u' \rangle\)) in \(\delta'\)
 - \(q\) is accepted \(\Rightarrow\) (\(q, u\)) is accepted; and v.v.
Pruning the tree (automaton)

- $Y = 2^E$
 - But the program shouldn't see unknown events
- Automaton A over Σ-labeled $(X \times Y)$-trees, generate $\text{narrow}_\gamma(A) = A'$ over Σ-labeled X-trees:
 - A' accepts $<X^*, V> \iff A$ accepts $\text{wide}_\gamma(<X^*, V>)$
- Simple:
 - $Q = (X \times Y)$; $Q' = X$
 - $\delta'(q, z) = \delta(q, z)$ replacing $(<x, y>, q')$ with (x, q')
Quick proof of narrow_Y

- $\text{wide}_Y(<X^*, V>) \in \mathcal{L}(A) \Rightarrow <X^*, V> \in \mathcal{L}(A')$
 - States the same
 - Pick an accepting run, drop the Y component
- $<X^*, V> \in \mathcal{L}(A') \Rightarrow \text{wide}_Y(<X^*, V>) \in \mathcal{L}(A)$
 - Define A'' with states $Q \times Y$ marking Y direction
 - $\mathcal{L}(A'') = \mathcal{L}(A)$
 - A run through states in A'' can be adjusted to a run in A
Program synthesis

- Create $A_{\Psi,\Psi}$ over 2^I_E O-labeled 2^I_E-trees
- Compute $A'' = \text{narrow}_{(2^E)}(\text{cover}(A_{\Psi,\Psi}))$ over 2^O-labeled 2^E-trees

- $<(2^I)^*,P> \in \mathcal{L}(A'') \Rightarrow \Psi \Rightarrow \Psi$ realizable

- Ψ realizable \Rightarrow
 \exists a computation tree $\in \mathcal{L}(A_{\Psi,\Psi}) \Rightarrow$
 $\color{red}{x-ray(wide}_{(2^E)}(<(2^I)^*,P>)) \in \mathcal{L}(A_{\Psi,\Psi}) \Rightarrow$
 $\color{red}{wide}_{(2^E)}(<(2^I)^*,P>) \in \mathcal{L}(\text{cover}(A_{\Psi,\Psi})) \Rightarrow$
 $<\(2^I)^*,P> \in \mathcal{L}(\text{narrow}_{(2^E)}(\text{cover}(A_{\Psi,\Psi})))$

- Constructive emptiness check
Formally...
Formal Discussion

- A fixpoint-based emptiness check
- CTL program synthesis
Emptiness

- $O((mn)^{3n})$ for nondeterministic tree automata
 - $m = |A|$
 - $n =$ number of pairs in Rabin acceptance condition Γ

- Works by model checking (sort of)
 - $A\Phi_{\Gamma} = A(...) (GF(g_\gamma) \ FG(\neg b_\gamma)) ...$
 - $i \in \{0 \ldots m - 1\}$
“Model checking” Overview

• Nondeterministic tree automata aren't convenient

• Convert to an AND/OR diagram T, pseudo-model-check
 - $|T|$ is $O(|A|)$

• $\mu Y. \forall \gamma \in \Gamma \text{ AFAG}((\neg b_{\gamma} Y) \land A(Fg_{\gamma} \Phi_{\Gamma/\{\gamma\}}))$
 - Φ_{Γ} also adjusted
 - $T,s \models A\Phi_{\Gamma} \Leftrightarrow T,s \models \exists i.Y^i, i \leq |T|$
“Model checking” $A(Fg_\gamma \Phi_{\Gamma/\{\gamma\}})$

- LHS: T,s $AFq \Leftrightarrow T,s$ $\mu x.(q \text{ EXAX}x)$
- $val(T, AFg_\gamma) \phantom{\text{\text{\text{\text{\text{}}}}} val(T, A\Phi_{\Gamma/\{\gamma\}})}$ doesn't work
 - Make it disjoint manually?
- RHS: $val(T/val(T, AFg_\gamma), A\Phi_{\Gamma/\{\gamma\}})$
 - Recursive in other pairs
“Model checking” $\text{AG}(g_\gamma(Y))$

- $g_\gamma(Y) = (\neg B_\gamma Y) A(Fg_\gamma \Phi_{\Gamma/\{\gamma\}})$
- $\text{AGr} = \nu x.(r \text{ AXx})$
- Determinations from the RHS?
 - $z^k = \nu z.\text{val}(z, g_\gamma(Y)) \text{ EXAX}(z)$
 - z is initially $\text{val}(T, g_\gamma(Y))$
 - $T, s \quad AGg_\gamma(Y^i) \Rightarrow$
 - $s \in z^k \Rightarrow$
 $T, s \quad \exists \alpha. AGg_\gamma(Y^\alpha)$
Finishing “Model checking”

- $\mu x. (\text{val}(T, \text{AG}(g_{\gamma}(Y)))) \text{ EXAX} x$
 - $T, s \quad \text{AFAG} g_{\gamma}(Y_i) \Rightarrow$
 - $s \in \text{val}(T, \text{AFAG} g_{\gamma}(Y_i)) \Rightarrow$
 - $T, s \quad \exists \alpha. \text{AFAG} g_{\gamma}(Y^\alpha)$

- Do all of that for each γ
 - $O(|\Gamma||T|^2)$ sub-checks for $|\Gamma|-1$ pairs
 - Total work: $O((|\Gamma||T|)^3|\Gamma|)$
The delightful side-effect

- A good thing: our final fixpoint is a deterministic subgraph satisfying ψ!
 - A “Hintikka structure”, necessitated by the Small Model Theorem

- Extracted Hintikka structures can be massaged into “transducers”
 - From I to O: a program!
Formal Discussion

- A fixpoint-based emptiness check
- CTL program synthesis
CTL as $\mathcal{L}_{\text{spec}}$

- CTL is very widely used and understood
- Clearer translation
- Simpler than CTL* \Rightarrow improved complexity
 - Less expressive...
The automaton

- A_ψ over 2^I \circ-labeled 2^I-trees
 - $O(|\psi|)$ states
 - q_0, $\{ cl(\psi) \times \{ \exists, \forall \} \}$
 - Büchi acceptance condition
 - A_ψ accepts $<T,V> \Leftrightarrow \text{wide'}_{2^E}(<T,V>)$ ψ
 - Transition function δ as in Yoram and Shahar's presentation
 - Adjusted for modes
The pre-transition relation δ'

- $\delta'(\psi, \sigma) : cl(\psi) \times 2^I \xrightarrow{E \ O} B^+(2^I \times Q)$
 - $\delta'(p \in I, E \notin \emptyset, \sigma) = p \sigma$
 - Logical connectives carry through
 - MX becomes $(, M)$
 - over inputs for E, over inputs for A
 - $M[1 \cup 2]$ becomes the usual or/recursive and
 - Same input connectives as X
 - MG is the same as $M[true \cup]$
The transition relation δ

- For $\in cl(\psi)$ and $u \in 2^I$

 $\delta(<\, M>, u) = \delta'(\ , u \quad \tau)$

 - $M = \exists$: over all τ in 2^E

 - $M = \forall$: over all τ in 2^E

- $\delta(q_0, u) = \delta'(\psi, u)$

- Some reductions:

 - $p \in E$ can be reduced to true/false for \exists/\forall

 - EX and AX are δ' regardless of state mode

 - $\delta(<EX \ , M>, u) = \delta'(EX \ , u)$
2l-exhaustiveness

- Recall: A_ψ accepts $<T,V> \iff \text{wide'}_2 E(<T,V>) \psi$
- V need not be 2^l-exhaustive
 - i.e. $V(w) \neq 2^l \ dir(w) = 2^l$
 - A_ψ accepts incomplete computation trees
- Good news: X-exhaustiveness is regular!
 - Build an automaton A_{exh}
Emptiness for Nondeterministic Büchi Tree Automata

- Büchi condition allows for PTIME method [VW84]
- Finds Hintikka structures
CTL program synthesis

- Generate A_ψ (alternating)
- Cross with A_{exh} (nondeterministic)
- Perform constructive emptiness test
- EXPTIME
 - Exponential blowup on conversion from alternating to nondeterministic
 - Polynomial emptiness check
Discussion

• Useful?
• Tractable?
• Implementation?