QuickRedex

Following Robby Findler’s excellent presentation on PLT Redex at POPL (check out the paper and presentation!), I hacked up something similar in Haskell. Naturally, it’s all manual, and there’s none of the publication or visualization support, but the essence is there. Here’s the code for the untyped lambda calculus:

module Untyped where

import Control.Monad
import Data.Maybe
import Test.QuickCheck

data Expr =
    Var Int
  | Lambda Expr
  | App Expr Expr

showExpr :: Int -> Expr -> String
showExpr _b (Var n) = "var" ++ show n
showExpr b (Lambda e) = "lambda. " ++ showExpr (b+1) e
showExpr b (App e1 e2) = "(" ++ showExpr b e1 ++ " " ++ showExpr b e2 ++ ")"

instance Show Expr where
  show e = showExpr 0 e

size :: Expr -> Int
size (Var _) = 1
size (Lambda e) = 1 + size e
size (App e1 e2) = size e1 + size e2

wellLexed :: Expr -> Bool
wellLexed = wellLexedAux 0
  where wellLexedAux :: Int -> Expr -> Bool
        wellLexedAux b (Var n) = 0 <= n && n < b
        wellLexedAux b (Lambda e) = wellLexedAux (b+1) e
        wellLexedAux b (App e1 e2) = wellLexedAux b e1 && wellLexedAux b e2

arbitraryExpr :: Int -> Int -> Gen Expr
arbitraryExpr n 0 = oneof [return $ Lambda $ Var 0] -- base case
arbitraryExpr n max = do
  oneof $ 
    (if n < max 
     then [arbitraryExpr (n+1) (max-1) >>= return . Lambda]
     else []) ++ 
    (if n > 0
     then [choose (0,n-1) >>= return . Var]
     else []) ++
    [do { e1 <- arbitraryExpr n (max `div` 2);
          e2 <- arbitraryExpr n (max `div` 2);
          return $ App e1 e2 }]

instance Arbitrary Expr where
  arbitrary = sized $ \max -> arbitraryExpr 0 max

-- All the terms we generate should be well-lexed
prop_WellLexed e = collect (size e) $ wellLexed e

subst :: Expr -> Int -> Expr -> Expr
subst e n (Var n') 
  | n == n' = e
  | otherwise = (Var n')
subst e n (Lambda e') = Lambda $ subst e (n+1) e'
subst e n (App e1 e2) = App (subst e n e1) (subst e n e2)

shift :: Int -> Expr -> Expr
shift i (Var n) = if n < i then Var n else Var (n-1)
shift i (Lambda e) = Lambda $ shift (i+1) e
shift i (App e1 e2) = App (shift i e1) (shift i e2)

value :: Expr -> Bool
value (Lambda e) = True
value _ = False

-- we can run this with m = Maybe or m = List
step :: MonadPlus m => Expr -> m Expr
step (Var _) = mzero -- unbound variable
step (Lambda e) = mzero -- found a term
step (App e1@(Lambda e11) e2) 
  | value e2 = return $ shift 0 $ subst e2 0 e11
  | otherwise = do
    e2' <- step e2
    return $ App e1 e2'
step (App e1 e2) = do
  e1' <- step e1
  return $ App e1' e2

-- if we can step, we'd better preserve scope
prop_StepWellLexed e = isJust next ==> wellLexed (fromJust next)
  where next = step e
        
-- verify progress
prop_Progress e = (classify isValue "value") $ (classify (not isValue) "step") $ value e || isJust (step e)
  where isValue = value e

-- use the List monad to ensure determinacy
prop_Deterministic e = nextStates > 0 ==> nextStates == 1
  where nextStates = length $ step e

One of the trickiest things here was making sure I was generating well lexed lambda terms that were small enough to be tractable. It would have been even harder, I think, with a more explicit representation of variables or binding. Thoughts, variations? Or, perhaps, complaints that I should have done this with GADTS or in Coq?

Leave a Reply

Your email address will not be published.